

 The Re:Search Engine:
 Simultaneous Support for Finding and Re-Finding

Jaime Teevan

Microsoft Research

Redmond, WA 98052 USA

Tel: 1-425-421-9299

teevan@microsoft.com

ABSTRACT

Re-finding, a common Web task, is difficult when previous-

ly viewed information is modified, moved, or removed.

For example, if a person finds a good result using the query

“breast cancer treatments”, she expects to be able to use the

same query to locate the same result again. While re-finding

could be supported by caching the original list, caching

precludes the discovery of new information, such as, in this

case, new treatment options. People often use search en-

gines to simultaneously find and re-find information. The

Re:Search Engine is designed to support both behaviors in

dynamic environments like the Web by preserving only the

memorable aspects of a result list. A study of result list

memory shows that people forget a lot. The Re:Search

Engine takes advantage of these memory lapses to include

new results where old results have been forgotten.

ACM Classification: H5.2 [Information interfaces and

presentation]: User Interfaces.

– Graphical user interfaces;

H5.4: Hypertext/Hypermedia.

– User issues.

General terms: Design, Experimentation, Human Factors

Keywords: Re-finding, search, dynamic information

INTRODUCTION

A recent Pew Internet and American Life report found that

search is a top Internet activity, second only to email [15].

Search engines are often used to re-find previously viewed

information [25]. While many search engines have begun

to support re-finding by, for example, caching query histo-

ry, these efforts are just a beginning. Most search tools

focus solely on the finding of new information. Support for

re-finding is likely to significantly improve people’s ability

to find in general, and may reduce organizational overhead

as re-finding replaces filing.

However, finding and re-finding can be in conflict; finding

new information means retrieving information that has not

been seen before, while re-finding requires retrieving in-

formation that has. For example, improving the search

results for a query can help a searcher encounter new, more

relevant results, but can also interfere with that person’s

ability to re-find previously viewed results that no longer

appear where expected [14, 25]. Because people regularly

find and re-find simultaneously [25], search tools need to

seamlessly support both activities. Yet currently tools that

address re-finding at all treat it in isolation.

The Re:Search Engine is a search system that addresses the

conflicting goals of providing new information and facili-

tating the re-finding of old information. It consists of a

Web browser toolbar plug-in that interfaces with a preexist-

ing search engine, such as Live or Google. When a person

issues a query to the Re:Search Engine that is similar to a

previous search, the engine fetches the current results for

the query from the preexisting search engine and fetches

relevant previously viewed results from its cache. The

newly available results are then merged with the previously

viewed results to create a list that supports intuitive re-

finding and contains new information.

An example is shown in Figure 1. When the search for

“breast cancer treatments” is repeated, memorable results

from the original list are preserved, while others are re-

placed by new, better results. As this paper will demon-

strate, the merged list appears unchanged. The list supports

re-finding as well as if it were the same, but is in fact fresh.

By replacing forgotten stale content with new content, the

Re:Search Engine uses the searcher’s limited memory to

the searcher’s advantage. Doing this requires understand-

ing of which aspects of a search result list are memorable

and thus might disorient the user if changed, and which are

not and thus can change freely. Following a discussion of

related work, this paper presents a study that reveals the

memorable aspects of search result lists. This study in-

forms the Re:Search Engine’s architecture and function,

which are then presented in detail. The paper concludes

with an evaluation of the engine that finds it supports re-

finding better than existing solutions while not interfering

with the searcher’s ability to find new information.

RELATED RESEARCH

Re-finding behavior has recently attracted considerable

interest [2, 3, 4, 25]. Repeat searches appear to be very

common as a way to revisit information [14]. Teevan et al.

[25] found that 33% of all queries have been issued before

by the same user. There have been a number of search

tools developed to support re-finding [5, 9, 10]. However,

these tools tend to ignore a common result of many be-

 Keep this space free for the ACM copyright notice.

havioral studies of re-finding: the path taken to find infor-

mation is very important when re-finding [4, 26]. Instead

existing re-finding tools support a process of returning to

information that can be very different than the process by

which the information was originally encountered.

Because people return to information guided by their pre-

vious interactions, changes that should help can interfere.

For example, dynamic menus were developed to help

people access menu items more quickly than traditional

menus by bubbling commonly accessed items to the top of

the menu. Rather than decreasing access time, research

revealed dynamic menus slow users down as commonly

sought items no longer appear where expected [11, 22].

Problems resulting from change have been observed for

search results as well [14]. In a study of search result sta-

bility, Selberg and Etzioni [19] noted that, “Unstable search

engine results are counter-intuitive for the average user,

leading to potential confusion and frustration when trying

to reproduce the results of previous searches.” Teevan et

al. [25] demonstrated the veracity of this statement via

large scale log analysis. They found that searchers took

significantly longer to click on a repeat search result during

a repeat query when the result list had changed. Another

example of the difficulties caused by result list change can

be found in a study by White, Ruthven, and Jose [29]. In

this study, the authors tried to help people search by giving

them lists of relevant sentences that were dynamically re-

ranked based on implicit feedback gathered during the

search. However, people did not enjoy the search expe-

rience as much or perform as well with the dynamic system

as they did when the sentence list was static.

Information management systems that do preserve consis-

tency of interaction despite change permit their users to

choose to interact with a cached version of their informa-

tion space [8, 16]. For example, Rekimoto [16] developed

a system that allows people to use their desktop to “time

travel” to specific information environments that existed in

the past. However, operating within a static world denies

users the opportunity to simultaneously discover new in-

formation. With such systems, searchers cannot, for exam-

ple, revisit previously found information on breast cancer

treatments while still learning about newly available treat-

ments. Support for simultaneous finding and re-finding is

important because the finding of new information while re-

finding is common. Teevan et al. [25] found that 27% of

repeat searches involve clicks on new results as well as

previously clicked results.

The Re:Search Engine is a way for searchers to easily inte-

ract with old and new search results at the same time. Per-

ceived consistency is maintained, so that result lists appear

unchanged even though it includes new and potentially

better results. The way this is done is modeled on the con-

cept of change blindness. Change blindness is a visual

phenomenon where obvious changes to a scene occur with-

out the viewer’s notice as a result of limitations on human

memory capacity and attention [21]. As an example, the

difference between the two photographs in Figure 2 is ob-

vious when they are viewed side by side – one picture has a

crosswalk and the other does not. But when the two pic-

tures are flashed sequentially, separated by a small gap in

time, most people cannot identify a difference – even when

they actively look for a change.

Several researchers in human-computer interaction have

explored how change blindness might affect users’ ability

to interact with computer-based information [6, 13, 28].

Their research, however, has focused on the fact that

Figure 1. On the left is the result list originally returned by the Re:Search Engine for the query breast cancer treat-
ments. On the right is the result list returned at a later date. It contains the results that the searcher remembers

having seen before where she expects them, while still including the new results.

people may miss important changes due to change blind-

ness, and the solutions presented try to draw users’ atten-

tion to changes, rather than trying to take advantage of such

holes in memory to present useful new information in an

unnoticeable manner. In the research presented here, the

changes to the search results in Figure 1 are intended to

pass unnoticed like the changes to the picture in Figure 2.

Although the list returned by the Re:Search Engine may

appear the same to the user, evaluation of the system de-

monstrates that the inclusion of new and better results can

nonetheless help satisfy the user’s information need. Usa-

bility improvements do not need to be noticed to benefit the

user. A classic example of this is the Macintosh design for

cascading submenus, where flexibility in navigating to

menu items is built into the menu design. The tolerance for

errors in navigation goes unnoticed by almost all users, but

leads to fewer errors overall [27]. Similarly, a study of an

improvement to cascading submenus showed all users per-

formed better even though only three out of the 18 partici-

pants actually noticed any change [1].

Rather than hiding any changes made to a repeat result list,

the Re:Search Engine could make changes explicit by, for

example, highlighting old or new results. However, any

alternative that presents both new and old information in a

single list (whether it does so visibly or invisibly) faces the

merging challenges that this work addresses.

RESEARCH USED TO BUILD THE RE:SEARCH ENGINE

The preceding discussion of related research helps to moti-

vate the need for the Re:Search Engine and provides an

overview of the principles it is built on. However, to ac-

tually construct a search system that takes advantage of a

person’s memory of previously viewed search results, it is

necessary to understand what is memorable about result

lists. A study was conducted to elicit this information. The

results of the study are highlighted here because of their

importance to the Re:Search Engine’s design and architec-

ture. Further details can be found in previous work [23].

In the study, 119 participants were asked to interact natural-

ly with a list of results for a self-generated query. Queries

were issued to a search engine via a Web form accessed

from the participant’s own computer, and clicked results

were logged. An hour later, participants were emailed a

survey that asked them to recall the result list without refer-

ring back to it. The survey asked participants to remember

the text of their query, the number of results returned, and

basic information about each result, including its rank, title,

snippet, URL, whether the URL was clicked, and if so,

what the corresponding Web page was like.

Because a result’s recalled rank may not correspond to its

true rank, the description of each recalled result had to be

matched to one of the originally viewed results. Two inde-

pendent coders performed this matching with an 84% inter-

rater reliability. The 189 results that were described richly

enough for both coders to make the same match were con-

sidered to have been “memorable”. These memorable re-

sults were analyzed to provide insight into how to predict

which results will be remembered, and how to understand

the relative likelihood that various different types of

changes that can occur in a result list will be noticed.

What Makes a Result Memorable

Participants recalled little about the result list that they

originally saw. Although only a few hours elapsed between

the first search and the follow-up survey, only 15% of all

results displayed were memorable. Two main factors

emerged from the data as affecting how likely a result was

to be remembered: where in the result list it was ranked and

whether or not the result was clicked.

Figure 3 shows the probability that a result was remem-

bered given its rank for clicked results (solid line) and un-

clicked results (dashed line). The shape of the curves is

similar to what has been observed in cognitive psychology

literature [12]. Those results that are presented first are

more memorable than later results and the results presented

last are somewhat more memorable than earlier results.

Results that were clicked were significantly (p<0.01) more

likely to be recalled. Forty percent of the time a result was

clicked it was remembered, compared to only 8% of results

Figure 2. A large change that can go unnoticed due to change blindness. Viewed side-by-side, it is obvious a cross-

walk appears in one picture and not the other. But when flashed sequentially, most cannot identify the difference.

that were not clicked. The last result clicked was particu-

larly memorable, with a 12% increase in recall compared to

other clicked results.

How Result Ordering Was Remembered

Subjects’ memories of result ordering were also analyzed to

understand how changes to ordering might affect their

ability to interact with a search result list. Participants reg-

ularly made mistakes when recalling a result’s rank. The

recalled rank differed from actual rank 33% of the time.

Mistakes were less common for early-ranked results. For

example, the first result’s rank was correctly recalled 90%

of the time. Accuracy dropped as rank dropped. This can

be seen graphically in Figure 4, which shows recalled rank

as a function of actual rank. This trend suggests moving a

result from the number one position in a result list is more

likely to be noticed than moving a lower ranked result.

Figure 4 also illustrates another trend in the data. The

greater weight of the data occurs to the right of the identity

line. This means that remembered results were much more

likely to be recalled as having been ranked higher than they

actually were. Those results moved up in the result list

24% of the time, significantly more often than they moved

down (10% of the time, p<0.01). The trend to remember

results as highly ranked could reflect the fact that remem-

bered results were more likely to be relevant to the partici-

pant’s information need and thus in the participant’s mind

“should have been” ranked more highly than they were.

It is interesting to consider the ramifications of the fact that

people misremember result ranking. It suggests that it may

be possible for a result list to look more like the result list a

person remembers having seen than the actual list they saw.

In evaluations of the Re:Search Engine, there was a trend

for the engine’s results to be perceived as static more often

than unchanged result lists. While these findings are not

significant, they could suggest that the Re:Search Engine

does a good job of placing results where they are expected

– even when that is not where they originally occurred.

How the Query Was Remembered

Analyzing the difference between how participants remem-

bered their query and the query they actually issued gives

insight into the way people may express re-finding needs.

A large scale log analysis of the differences between re-

finding queries can be found in work by Teevan et al. [25].

In the study presented here the original query was misre-

membered 28% of the time. A majority of the differences

between the original query and the remembered query fell

under the following four categories (the percentage of mi-

sremembered queries for each category is in parentheses):

Capitalization (31%). A common change between the ini-

tial query and the remembered query was that the words in

one query would be capitalized differently than they were

in the other query. For example, the query “Buddha belly”

became “Buddha Belly” an hour later.

Word form (28%). Another common change observed was

in word form. For example, a query term that was original-

ly listed as plural might be remembered as singular, as in

the case where “sample television scripts” became “sample

television script”.

Word ordering (28%). The order individual terms occurred

in a query also often changed. For example, the query

“porsche 356” was remembered as “356 Porsche”.

Phrasing (31%). The helper words used to place the pri-

mary query terms in context often varied. An example of

this is that one participant originally queried, “I’m looking

for a Burberry Scarf” but remembered the query as “Where

can I find Burberry Scarves?” Unimportant terms like

“for” and “where” are commonly referred to as stop words.

THE RE:SEARCH ENGINE ARCHITECTURE

The Re:Search Engine was designed to use the results of

this study to preserve memorable aspects of old result lists

when people appeared to be re-finding while also incorpo-

rating new results. The engine consists of a Web browser

toolbar plug-in that interfaces with a preexisting search

Figure 4. The result’s location in the result list
as the participant remembered it, compared with
its actual location. Size represents the number
of people remembering that combination.

Figure 3. The probability of recalling a result
given rank. The probability generally decreases
as a function of rank. Clicked results were sig-
nificantly more likely to be recalled (p<0.01).

engine (e.g., Live or Google). When a person issues a

query to the Re:Search Engine that they have issued before,

the engine fetches the current results for that query from the

underlying search engine and merges any new information

with what the user is likely to remember about the pre-

viously returned search results.

The architecture of the Re:Search Engine is shown in Fig-

ure 5. The system consists of four major components: an

index of past queries that the user has issued, a result cache

containing previously viewed results, a user interaction

cache, and a merge component. The index of past queries

is implemented as a hash table that maps query terms to

queries. Similarly, the result cache maps queries to result

lists, and the user interaction cache maps query/result pairs

to interactions. The merge algorithm is what drives the

engine, making use of these pieces to create a result list.

All of the data collected by the Re:Search Engine is stored

locally on the user’s machine. This has the disadvantage of

tying the use of the Re:Search Engine to a particular ma-

chine, but such a design decision ensures that the relatively

large amount of personal information that the Re:Search

Engine stores will remain private.

HOW THE RE:SEARCH ENGINE FUNCTIONS

This section describes how each of the components of the

Re:Search Engine work together to produce the search re-

sult list returned to the user. In order to identify relevant

previously viewed results, the user’s query is initially

matched to an index of the past queries that the user has

issued. The index returns queries that are similar to the one

just issued and a match score for each representing how

similar it is to the current query. Robust query matching is

necessary because, as suggested by the earlier study, people

do not always use exactly the same query when repeating a

search. Matched queries are then used to retrieve the pre-

viously viewed results for each query from the result cache.

This set of potentially memorable results, along with the

live results for the current query from the underlying search

engine, are merged together using the query match scores

to weight how important each different result set is. The

new query is added to the index of past queries and the

merged result list is added to the result cache. Finally, the

resulting list of search results is presented to the user, and

the user’s interactions with the list are logged. Each com-

ponent is described in greater detail below.

Index of Past Queries

The index of past queries uses the current query and past

queries to determine if the user intends to retrieve previous-

ly viewed information during the current search, and, if so,

which past queries as associated with the current search.

Once past relevant queries are gathered, the current query is

added to the past query index for use in future searchers.

The index of past queries functions in a similar manner to a

traditional document index used in information retrieval,

except that the “documents” that are indexed are past query

strings. Matching queries using an index deemphasizes the

commonly misremembered query features described earli-

er. Query strings are tokenized, stemmed, changed to low-

er case, and stop words are removed. Each past query (pq)

is given a score based on how closely it matches the current

query (cq). The score (Spq) is computed using a standard

information retrieval scoring function known as tf.idf [18]:

 Spq = ∑ pqt log(N/nt)

t in cq

where N is the number of past queries the user issued, and

nt is the number of past queries in which term t occurs.

This scoring function reflects the fact that past queries that

match on terms the user searches for rarely are more likely

to mean the same thing than commonly used terms. The

match score determines how much weight the results for

each query carry in the merge process.

Earlier research has shown that not all queries with similar

text are repeat queries [25]. For example, if a user is in the

middle of a search session, it is likely that when a user is-

sues several variants of the same query, that user actively

wants to see new results with each variant. The results

Figure 5. The architecture of the Re:Search Engine. The user’s current query is matched to past queries, and the
results for the past queries are retrieved from a cache. These results are then merged with the live search engine
results based on how memorable the results are, and the resulting result list is presented to the user.

from query reformulations should not be merged into the

results from the query issued immediately prior even when

there is significant overlap in the query. For this reason,

past queries that are similar but that occurred recently are

ignored. In future sessions, any query from the session of

overlapping queries may match. A future improvement

may be to weight queries towards the end of a session more

highly, on the assumption that these queries were more

relevant to the user’s goal.

While queries that occurred a long time ago may be repeat

queries, it is also likely that the user has forgotten the re-

sults associated with the query. To account for progressive

forgetting, the query’s score is discounted by the log of the

amount of elapsed time, a function commonly used in cog-

nitive psychology literature to model human forgetfulness

[17]. When enough time has passed that a user is likely to

not even remember having issued the query before, the

query and its associated results could be expunged from the

system, relieving potential long term storage burdens. This

functionality is not currently implemented.

Although the index of past queries permits flexible query

matching, the Re:Search Engine’s interface is designed to

encourage users to communicate re-finding intent by en-

couraging them to exactly duplicate previously issued que-

ries. Existing query histories can be difficult to use [14].

The index of past queries is used to support sophisticated

query completion in the search box. Past queries that

match the query being typed in are suggested, weighted by

the query’s score. Thus if the searcher who had previously

searched for “breast cancer treatments” (e.g., Figure 1) be-

gan typing, “cance..,” into the search box, her previous

query for will be suggested.

Result Cache

If the query the user issued is determined to be related to

one or more previous searches, the results corresponding to

the previous searches are fetched from a result cache using

the pervious queries returned by the past query index. The

result cache is a straightforward cache that maps an exact

query string to the search results list presented to the user

for that query. Only the most recently viewed set of results

for a particular query is stored in the cache. For example,

when the query “breast cancer treatments” was issued a

second time in Figure 1, the merged results shown on the

right replaced the old results in her result cache.

User Interaction Cache

Once past results that might be relevant to the user’s cur-

rent query are fetched, they are merged with the live search

results to produce a result list consisting of old and new

information to return to the user. Because the merge algo-

rithm is designed to help users take advantage of what they

learned about the current query during past searches, it

needs to estimate how likely the past results the user inte-

racted with are to be memorable. The user’s browser is

instrumented to gather implicit information about the user’s

interactions with previously viewed results. This informa-

tion is stored in the user interaction cache.

Currently the user interaction cache only records the results

that the user clicks on. But there are many other possible

implicit cues that could use to understand which results are

memorable to the user. Possible cues worth investigating

include dwell time on the result’s Web page, the number of

times a particular result is accessed, and more sophisticated

measures such as mouse tracking or eye tracking. Addi-

tionally, active information could be gathered. For exam-

ple, the system could easily be extended to allow users to

mark results that they believe are worth remembering.

Merge Algorithm

This paper has argued that for a result list to be useful for

re-finding, it must preserve the results the searcher re-

members having seen during earlier searches where the

searcher expects to see them. New results can be added

where old results have been forgotten. To merge a new

result list with old result lists, the value of the new informa-

tion presented needs to be balanced with the cognitive cost

of presenting old information in unexpected ways.

The quality of a result list is a function of how much high

quality new information is included in the list, ranked so

that the new information will be seen, and how closely the

list matches the user’s memory. By iterating over all poss-

ible lists, the highest quality list l can be chosen to return.

 10

 argmax ∑ B(l(r), r) + M(l(r), r)

 possible lists l r=1

The function B returns the benefit of new information pro-

vided by a result in the list l when shown at position r. The

function M returns the memorability of the result is when

shown at position r. Each of these two functions is de-

scribed in greater detail below, followed by a discussion of

how the best possible list can be chosen efficiently.

Benefit of New Information (B)

The most relevant new results for a query need to be identi-

fied for inclusion in the returned result list. New results are

found by running the query on an underlying search engine

such as Live or Google. The Re:Search Engine uses a re-

sult’s rank in the underlying engine’s result list as a proxy

for relevance to calculate the potential benefit of the new

result. Scoring information could be used if available.

The expected benefit that a new result will provide in the

returned result list is also a function of how likely it is to be

encountered. The closer a result is ranked to the top of the

returned result list, the greater the benefit it provides.

The benefit of new information (B) is defined to be zero if

the result is not in the list currently returned by the underly-

ing search engine. Otherwise, it is:

 B(i, r) = (11-rn(i)) (10+(11-r))

where rn(i) is the rank of the new result i in the result list

returned by the underlying search engine. Thus results that

rank highly in the underlying engine’s result list are more

beneficial when they occur anywhere in the merged list

than results that are ranked later by the underlying engine.

Note that in the current implementation, results that occur

in the underlying result list but that were seen before con-

tribute a non-zero benefit of new information and a non-

zero memorability score. This reflects the fact that these

results are likely to be both relevant to the current informa-

tion need and memorable. However, an alternative ap-

proach that places a higher value on the inclusion of new

information – at the risk of including information that is

currently judged less relevant – would be to filter previous-

ly viewed results from the new result list and only assign a

benefit of new information score to un-viewed results.

Memorability (M)

Value is assigned to how memorable a result is using the

two main factors identified earlier: where the result was

ranked and whether it was clicked. The probability of a

result being recalled can be modeled as Pr(recall(i)|ro(i),

c(i)), where ro(i) is the previous rank of the result, and c(i)

is whether the link was clicked or not. A smoothed version

of the results shown in Figure 3 is used in the calculation of

this probability. The probability of remembering a result

that has not been seen before is zero.

The value of preserving a previously viewed result in the

final result list is a function not only of how memorable

that result is but also of how likely it is to appear where the

user remembers having seen it. For this reason, memorable

results ranked near where they were originally ranked re-

ceive higher memorability scores than others. The value of

a result being remembered at a particular rank is calculated

using a smoothed version of the empirical probabilities of a

particular rank being recalled at a different rank,

Pr(recall(r)|ro(i)), shown in Figure 4. Thus memorability

(M) is computed as follows:

 M(i, r) = Pr(recall(i)|ro(i), c(i)) Pr(recall(r)|ro(i))

Because the results clicked last during earlier searches are

empirically more memorable, those results are given a cor-

responding boost in memorability. A result’s memorability

is also weighted by the match score of the query associated

with it, since queries that do not match the current query

very well are unlikely to have returned results that the user

finds memorable during their current search task.

Choosing the Best Possible List

During the merge process, all permutations of possible final

lists that include at least a few old results and a few new

results are considered, and the result list with the highest

total benefit of new information memorability is selected.

There is obviously a trade-off between preserving a lot of

the information seen during previous queries and present-

ing as much new information as possible. Requiring that

both old and new results be included in the final list ensures

that some context is maintained while not allowing the list

to stagnate. While the minimum number of results pre-

served and added could be determined dynamically as a

function of how likely the query is to be a re-finding query,

the value is currently set to three for each case.

Although considering all permutations of possible result

lists naively is expensive, the merge algorithm can be im-

plemented efficiently by representing the problem as a min-

cost network flow problem [7]. The complexity is, in prac-

tice, O(m), and the implementation runs in 180 millise-

conds (including Java startup time) on a standard machine.

This performance is achieved by representing the list selec-

tion problem as the network shown in Figure 6.

Ten units of flow are sent through the graph, each unit

representing one result in the final result list. Seven units

are passed to nodes representing the new results, and seven

are passed to nodes representing the old results. This en-

sures that at least three units must pass through the old re-

sults and at least three through the new results. The nodes

representing new results are connected to the ten slots

representing the result list with unit capacity edges that

have costs inversely proportional to each result’s benefit of

new information. The nodes representing old results are

similarly connected to the ten result lists slots with unit

capacity edges that have costs inversely proportional to

each result’s memorability. All other edges have zero cost.

The best list is found by finding the maximum flow

through the graph with the minimum cost. Because only

one unit of flow can travel from each result slot to the sink,

only one unit of flow can travel into each slot. The candi-

date node from which that unit of flow arrives represents

the result that should be ranked in that slot’s position.

Figure 6. Graph representation of the merge algorithm. All edges have unit flow, except edges labeled in green. All
edges have zero cost, except edges connecting the nodes representing the new and old results to the slots.

The cost of change and the benefit of new information can

be weighted to express the relative value of new and old

information. . For example, if the benefit of new informa-

tion score for each result is much higher than the memora-

bility score of each old result, then only the minimum three

required results will come from previously viewed result

list. The emphasis placed on each class of information

should be a function of the individual using the Re:Search

Engine, the elapsed time since the original list was seen,

and the engine’s certainty that the person wants new infor-

mation versus old information. In the implementation

tested, when no results were clicked the merging produced

a list that began with four old results and ended with six

new results. When low ranked results from the original

result list were clicked, the clicked results were preserved

in the new merged result list while higher ranked previous-

ly viewed results were dropped. Several examples of

merged lists are shown in Table 1.

For simplicity, users are assumed to remember perfectly

which result page a result occurred on (e.g., whether the

result occurred in the top ten, or in results 11-20). Because

the results for a query are never expected on a different

result page than where they were seen, each old result page

can be treated independently of other result pages during

the merge. The highest ranking new information available

is always is merged in, regardless of what particular page is

requested. Although it is very likely that people do not

really accurately remember which page a result for a query

occurred on, in practice so few people visit subsequent re-

sult pages [20] that supporting the movement of results

across result pages may not be worth additional overhead.

UNDERSTANDING THE RE:SEARCH ENGINE

Understanding how well the merge algorithms functions is

essential to understanding how well the Re:Search Engine

can support the simultaneous finding and re-finding of in-

formation. It is not obvious that people can use a changed

result list to re-find, even when the memorable aspects are

preserved. Nor is it obvious that new results will be useful

for the finding of new information when they are hidden in

the result list. For this reason, the merge process is ex-

plored in greater depth here. A longitudinal study of how

the Re:Search Engine is used and how it affects finding and

re-finding behavior in the long run stands as future work.

The merge algorithm was evaluated by comparing how it

ranked results with three other possible ways to merge old

results with new. The Re:Search Engine’s merge will be

referred to as:

Intelligent Merge. Results are merged according to

the Re:Search Engine’s intelligent merging algorithm

so that memorable aspects of the original list are main-

tained. On average, four new results are included.

The other three other possible merging are:

1. Dumb Merge. Six old results are randomly maintained

and the top four new results included in random places.

2. Original. No merging is done. The new result list is

exactly the same as the old list. This is what a user of a

system that caches previous results would see.

3. New. The list is comprised of entirely new results.

To reflect the desired usage scenario where the new infor-

mation to be included is more relevant to the user’s needs,

the results in the original list were chosen to be less rele-

vant than the new result list, as indicated by search engine

rank. The Original list consisted of results 11 through 20,

and the New list consisted of results 1 through 10.

Two studies were conducted to compare these different

merge types. The first study (Study I) establishes the abili-

ty of the Re:Search Engine to invisibly include new infor-

mation in result lists. The second study (Study II) demon-

strates that the research engine supports re-finding as well

as if the result list never changed, while still supporting the

finding of new information almost as well as if the list con-

tained only new information.

Study I: New Information Can Be Included Invisibly

The ability of the Re:Search Engine to invisibly include

new results in a list was studied by looking at how well 132

people could recognize a result list as being one they had

seen before. As with the study presented earlier in this

paper used to elicit the memorable aspects of result lists,

participants were first asked to run a query of their choos-

ing and interact with the results as they normally would.

Also similar to the previous study, participants were asked

about that search an hour later. During the follow-up ses-

sion, however, instead of being asked to recall information

about the result list, participants were asked to recognize

whether a result list was the same or different from what

they originally saw. The study was between-subjects; each

subject was asked about only one of the four possible lists.

Differences were noticed most often for the two cases

where new information was included in the follow-up list

without consideration of what the searcher found memora-

ble. When the follow-up results list was comprised of en-

tirely new results (New), participants reported the list had

changed 81% of the time. When four random results were

held constant (Dumb Merge), the change to the remaining

six results was noticed 62% of the time. The difference

between the two cases was not significant.

Table 1. The rank of new results and results
from the original result list after merging.

Merged

Rank

Results clicked in original result list:

None 9 1, 2, 6, 8

1 Old result 1 Old result 1 Old result 1

2 Old result 2 Old result 2 Old result 2

3 Old result 3 Old result 3 Old result 3

4 Old result 4 New result 1 New result 1

5 New result 1 New result 2 New result 2

6 New result 2 New result 3 Old result 6

7 New result 3 Old result 9 Old result 8

8 New result 4 New result 4 New result 3

9 New result 5 New result 5 New result 4

10 New result 6 New result 6 New result 5

The remaining two cases (Original and Intelligent Merge),

represent instances where information from the original

result list that might be memorable to the participant was

not permitted to change – in the former case to the point of

not including any additional new information. Even when

the result list did not change at all, participants sometimes

believed a change had occurred (31% of the time). In fact,

participants were more likely to believe the result list had

changed when all results were the same than for the Intelli-

gent Merge case, where differences were noted only 19%

of the time. This disparity is not significant, but as men-

tioned earlier could reflect the fact that the intelligently

merged list may actually look more like the list the partici-

pant remembers than the actual original result list. While

there was no significant difference between the two, the

result lists from both the Intelligent Merge and Original

cases were significantly more likely to be considered the

same as the original list than the other two cases (p<0.01).

Study II: Even Invisible New Information is Useful

Although the previous study reveals it is possible to invisi-

bly include new results in a result list, it is not clear from

the study that invisible results are actually useful for find-

ing new information, nor that a list that appears unchanged

is useful for re-finding previously viewed information. To

test the value of invisible new information, a second more

controlled study was conducted. Like the previously de-

scribed studies, the study involved two parts: 1) An initial

session where participants conducted finding tasks, and 2)

A follow-up session where participants conducted finding

and re-finding tasks using the four different list types.

Unlike the previous between-subject studies, the study de-

sign was within-subject. Each of the 42 participants in this

study conducted 12 search tasks during the initial session

and 12 search tasks during the follow-up session. Six of

the follow-up tasks were re-finding tasks, and six were

new-finding tasks. For re-finding tasks, participants were

given either the original list or one of the two merged lists.

For new-finding tasks, they were given either the new list

or one of the two merged lists. For each task, timing and

interaction information was logged and questionnaire data

was elicited. By comparing how well participants per-

formed during the second session with how they performed

during first, it is possible to understand the value of infor-

mation re-use across sessions. A more detailed description

of the study can be found elsewhere [24].

Table 2 presents how long it took participants to perform

new-finding and re-finding tasks, broken down by list type.

Task completion time can be a proxy for ease, and is one of

several measures that showed a similar trend. The results

reveal that the Re:Search Engine’s intelligent merging of

new information makes re-finding virtually as easy as if the

results had not changed at all. Although the amount of time

taken to re-find was the lowest when a static result list was

used, there was no significant difference in re-finding time

when new results were merged in intelligently. On the oth-

er hand, re-finding was significantly faster than the Dumb

Merge for both the Intelligent Merge (p<0.05) and the

Original list (p<0.01).

For new-finding tasks, the Intelligent Merge used by the

Re:Search Engine was weakly significantly faster (p<0.05)

than the random Dumb Merge. The Intelligent Merge also

supported the finding of new information more quickly

than a list of entirely new information, but the difference

was not significant. However, the trend could suggest that

people posses some ability to re-use knowledge even when

finding new information – perhaps, for example, partici-

pants were able to skip over memorable old results.

Given these findings, the Re:Search Engine’s intelligent

merging seems to be the best compromise to support both

finding and re-finding. A static, unchanging result list

works well for re-finding but does not support the finding

of new information. In contrast, a result list with new in-

formation works well to support the finding of new infor-

mation, but does not support re-finding well. The intelli-

gent merging performs closely to the best of both in both

cases, while the dumb merging does comparatively worse.

CONCLUSION AND FUTURE WORK

This paper presented the Re:Search Engine, a search tool

designed to support simultaneous information finding and

re-finding. Currently re-finding is made difficult because

when people issue repeat queries they receive new results.

While results may be more relevant ignoring prior context,

they are not necessarily more relevant to the re-finding

task. Although the ability to find new information may

appear at odds with the ability to re-find, the Re:Search

Engine resolves this conflict by including new results

where changes to the result list will not be noticed. This

allow people to find new information as easily as if they

were given all new information, while still allowing people

to re-find information as easily as if nothing had changed.

In its current implementation, the new information to be

included in Re:Search is assumed to become available as a

result of natural changes in the results returned by the un-

derlying search engine. Web search results can change

over time as new information is indexed or as the search

algorithms are updated. As search engines begin to support

personalization based on their users’ ever-changing con-

text, the rate of change to result lists is likely to increase.

Additionally, new information could also be proactively

included in search result lists, at the expense of potential

Table 2. The time it took participants to com-
plete the tasks in the second session.

Task

Type

List Type Used in

Second Session

Task Time (seconds)

Mean Median

N
ew

-

F
in

d
in

g
 Dumb Merge 153.8 115.5

Intelligent Merge 120.5 85.5

New 139.3 92

R
e-

fi
n

d
in

g
 Dumb Merge 70.9 37.5

Intelligent Merge 45.6 23

Original 38.7 26

relevance, to increase the diversity of information the

searcher is exposed to.

The current implementation of the Re:Search Engine also

assumes a significant period of time passes between repeat

visits to search result lists. It will be interesting, however,

to explore how new results can be snuck into lists that are

actively being used, much as was done during the initial

paper prototype. This would allow search engines to im-

prove results using real time implicit relevance feedback

without disrupting the user’s search. Research into this

domain is currently under way.

Effectively supporting expectation is essential to success-

fully supporting people’s complex finding behavior. This

is particularly true as the growing ease of electronic com-

munication and collaboration, the rising availability of time

dependent information, and the introduction of automated

agents, suggest information is becoming ever more dynam-

ic. Even traditionally static information like a directory

listing on a personal computer has begun to become dy-

namic; Apple, for example, has introduced “smart folders”

that base their content on queries and change as new infor-

mation becomes available. As Levy [10] observed, “[P]art

of the social and technical work in the decades ahead will

be to figure out how to provide the appropriate measure of

fixity in the digital domain.” The solution presented here is

a good first step towards that end.

ACKNOWLEDGEMENTS

This research owes much to valuable discussions with Da-

vid Karger, Sue Dumais, Mark Ackerman, and Rob Miller.

REFERENCES
1. Ahlström, D. (2005). Modeling and improving selection in

cascading pull-down menus using Fitts' law, the steering law
and force fields. In Proceedings of CHI ’05, 61-70.

2. Aula, A., Jhaveri, N., and Käki, M. (2005). Information

search and re-access strategies of experienced Web users. In
Proceedings of WWW ’05, 583-592.

3. Bruce, H., Jones, W. and Dumais, S. (2004). Keeping and re-

finding information on the Web: What do people do and what
do they need? In Proceedings of ASIST ’04.

4. Capra, R. and Pérez-Quiñones, M.A. (2005). Using Web

search engines to find and refind information. IEEE Comput-

er, 38 (10), 36-42.

5. Dumais, S. T., Cutrell, E., Cadiz, J. J., Jancke, G., Sarin, R.

and Robbins, D. C. (2003). Stuff I’ve Seen: A system for per-

sonal information retrieval and re-use. In Proceedings of
SIGIR ’03, 72-79.

6. Durlach, P. J. (2004). Change blindness and its implications

for complex monitoring and control systems design and opera-

tor training. Human-Computer Interaction, 19(4): 423-451.

7. Goldberg, A.V. (1997). An efficient implementation of a scal-

ing minimum-cost flow algorithm. Journal of Algorithms,
22(1): 1-29.

8. Hayashi, K., Nomura, T., Hazama, T., Takeoka, M., Hashimo-

to, S., and Gudmundson, S. (1998). Temporally-threaded

workspace: A model for providing activity-based perspectives

on document spaces. In Proceeding of HyperText ’98.

9. Komlodi, A., Soergel, D., and Marhionini, G. (2006). Search

histories for user support in user interfaces. JASIST, 57(6):
803-807.

10. Levy, D. (1994). Fixed or fluid? Document stability and new
media. In Proceedings of European Conference on Hypertext.

11. Mitchell, J. and Shneiderman, B. (1989). Dynamic versus

static menus: An exploratory comparison. ACM SIGCHI Bul-

letin, 20(4): 33-37.

12. Murdock, B. B. (1962). The Serial Position Effect of free

recall. Journal of Experimental Psychology, 64, 482-488.

13. Nowell, L., Hetzler, E., and Tanasse, T. (2001). Change

blindness in information visualization: A case study. In Pro-

ceedings of INFOVIS ’01, 15-22.

14. Obendorf, H., Weinreich, H., Herder, E., and Mayer, M.

(2007). Web page revisitation revisited: Implications of a

long-term click-stream study of browser usage. In Proceed-

ings of CHI ’07, 597-606.

15. Rainie, L. and Shermak, J. (2005). Pew Internet and Ameri-

can Life Project: Data memo on search engine use. Retrieved

January, 2006 from

http://www.pewinternet.org/pdfs/PIP_SearchData_1105.pdf.

16. Rekimoto, J. (1999). Time-machine computing: A time-

centric approach for the information environment. In Pro-

ceedings of UIST ’99, 45-54.

17. Rubin, R. C. and Wenzel, A. E. (1996). 100 years of forget-

ting: A quantitative description of Retention. Psychological

Review, 103, 734-760.

18. Salton, G. (1998). Automatic text indexing using complex

identifiers. In Proceedings of the ACM conference on Docu-

ment processing systems, 135-144.

19. Selberg, E. and Etzioni, O. (2000). On the instability of Web

search engines. In Proceedings of RIAO ‘00.

20. Silverstein, C., Marais, H., Henzinger, M., and Moricz, M.

(1999). Analysis of a very large Web search engine query log.

ACM SIGIR Forum, 33(1): 6-12.

21. Simons, D. J. and Rensink, R. A. (2005). Change blindness:

Past, present, and future. Trends in Cognitive Sciences,

9(1):16-20.

22. Somberg, B. L. (1986). A comparison of rule-based and posi-

tionally constant arrangements of computer menu items. In

Proceedings of CHI/GI ’86, 255-260.

23. Teevan, J. (2006). How people recall search result lists. In

Proceedings of CHI ’06.

24. Teevan, J. (2007). Supporting finding and re-finding through

personalization. Doctoral thesis, Massachusetts Institute of

Technology.

25. Teevan, J., Adar, E., Jones, R., and Potts, M. (2005). History

repeats itself: Repeat queries in Yahoo’s query logs. In Pro-

ceedings of SIGIR ’06, 703-704.

26. Teevan, J., Alvarado, C., Ackerman, M. S., and Karger, D. R.

(2004). The perfect search engine is not enough: A study of

orienteering behavior in directed search. In Proceedings of

CHI ’04, 415-422.

27. Tognazzini (1999). A quiz designed to give you Fitts.

http://asktog.com/columns/022DesignedToGiveFitts.html

28. Varakin, D. A., Levin, D. T., and Fidler, R. (2004). Unseen

and unaware: Implications of recent research on failures of

visual awareness for human-computer interface design. Hu-

man-Computer Interaction, 19(4): 389-422.

29. White, R., Ruthven, I., and Jose, J.M. (2002). Finding relevant

documents using top ranking sentences: An evaluation of two

alternative schemes. In Proceedings of SIGIR ’02, 57-64.

