
Mercury: Empowering Programmers’ Mobile
Work Practices with Microproductivity

Alex C. Williams Harmanpreet Kaur Shamsi T. Iqbal
University of Waterloo University of Michigan Microsoft Research
Waterloo, ON, Canada Ann Arbor, MI, USA Redmond, WA, USA

alex.williams@uwaterloo.ca harmank@umich.edu shamsi@microsoft.com

Ryen W. White Jaime Teevan Adam Fourney
Microsoft Research Microsoft Research Microsoft Research

Redmond, WA, USA Redmond, WA, USA Redmond, WA, USA
ryenw@microsoft.com teevan@microsoft.com adamfo@microsoft.com

ABSTRACT
There has been considerable research on how software can
enhance programmers’ productivity within their workspace.
In this paper, we instead explore how software might help pro-
grammers make productive use of their time while away from
their workspace. We interviewed 10 software engineers and
surveyed 78 others and found that while programmers often
do work while mobile, their existing mobile work practices are
primarily exploratory (e.g., capturing thoughts or performing
online research). In contrast, they want to be doing work that
is more grounded in their existing code (e.g., code review or
bug triage). Based on these findings, we introduce Mercury, a
system that guides programmers in making progress on-the-
go with auto-generated microtasks derived from their source
code’s current state. A study of Mercury with 20 program-
mers revealed that they could make meaningful progress with
Mercury while mobile with little effort or attention. Our find-
ings suggest an opportunity exists to support the continuation
of programming tasks across devices and help programmers
resume coding upon returning to their workspace.

Author Keywords
Programming, microtask, mobile, continuation, interruption.

CCS Concepts
•Software and its engineering → Integrated and visual
development environments; •Human-centered computing
→ Mobile computing; Usability testing; Laboratory experi-
ments;

INTRODUCTION
There are millions of professional programmers, and their
numbers are growing significantly faster than previously pre-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST’19, October 20–23, 2019, New Orleans, LA, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 123-4567-24-567/08/06. . . $15.00

Figure 1: Mercury allows programmers to continue their work on-the-go. (1)
When a user leaves their workstation, Mercury generates microtasks from
their code, (2) then serves the tasks to their mobile device. These tasks are
brief and require little attention. (3) Finally, Mercury integrates the user’s
microtask responses into the their workstation’s source files.
dicted [11]. However, programmers are not able to fully take
advantage of the added opportunities and flexibility that mo-
bile devices offer in getting things done, due to the challenge
of working across devices. From large desktops to small wear-
ables, information workers today often use multiple devices
to accomplish their work in the most productive way possible
[24, 51, 43, 23], but programming presents a unique set of
obstacles, such as the reliance on personalized development
environments most suited for large workspaces [22], or on
tasks not suitable for limited attention scenarios.

In this paper, we explore how to facilitate programmers’ mo-
bile work practices. We conducted two pre-studies to under-
stand how programmers currently use their mobile devices for
work: a contextual inquiry with 10 software engineers, and a
large-scale online survey with 78 software engineers. We find
our participants already perform a myriad of programming-
related tasks while mobile, many of them exploratory (e.g.,
related to capturing thoughts or conducting online research).
However, they also expressed a desire to perform more mobile
tasks that are grounded in existing code (e.g., conducting code

DOI: http://dx.doi.org/10.475/123_4

http://dx.doi.org/10.475/123_4
mailto:permissions@acm.org

reviews or triaging bugs), but such tasks are not yet well sup-
ported by existing mobile tools. Further, many of their tasks
while mobile are intended to support the effective continuation
of their work upon returning to their workstation.

Recent research suggests that microproductivity is one partic-
ularly beneficial design pattern for bringing mobility to oth-
erwise immobile information work [23, 54]. Building on our
pre-studies’ findings, we developed a system, named Mercury,
that interfaces with Visual Studio Code to facilitate mobile
task completion and real-time cross-device continuation for
programmers. As shown in Figure 1, Mercury orchestrates
programmers’ work practices by providing them with a series
of auto-generated microtasks on their mobile device based
on the current state of their source code. Tasks in Mercury
are designed so that they can be completed quickly without
the need of much additional context, making them suitable to
address during brief moments of downtime. When users com-
plete microtasks on-the-go, Mercury calculates file changes
and integrates them into the user’s codebase where appropri-
ate. From a user study with 20 participants, we find Mer-
cury’s microtask design to be an enjoyable and productive yet
lightweight approach to conduct work on-the-go, and one that
also aids individuals in resuming their work upon returning to
their workstation. In this paper, we specifically:

• Present the notion of exploratory and grounded microtasks
based on programmers’ existing and desired practices.

• Introduce Mercury, a mobile programming tool that auto-
generates microtasks based on programmers’ existing code.

• Find that Mercury’s microtasking model effectively allows
programmers to continue their work on-the-go.

• Observe that engaging with programming-related micro-
tasks via Mercury spurs users’ ability to resume their work.

The remainder of the paper is structured as follows. We present
related work, describe the findings of the contextual inquiry,
and present the results of the online survey. We then present
Mercury and its evaluation, then conclude with a discussion of
considerations for designing systems that allow programmers
to make progress in their work while on-the-go.

RELATED WORK

Multi-Device Use in Information Work
Increasingly, the human factors literature is examining how
information workers use multiple devices to support their work
[24, 16]. Karlson et al. [26] found that information workers’
mobile work patterns are heavily centered around time. This
research has identified a number of barriers to performing mo-
bile work, including the poor usability of mobile web browsers
[25] and issues related to resuming tasks across workstations
and mobile devices [27]. Certain work tasks appear to be more
appropriate for mobile interfaces than others [3, 46]. Infor-
mation workers often defer engaging with a task based on the
device that is available [15, 27]. However, information work-
ers want the ability to continue tasks across devices as they
otherwise have to manually transmit data between devices [24,
51]. Research has committed to understanding continuation
by studying the design [17], development [45], or evaluation
[9, 42, 41] of systems that support it in practice.

Prior research has examined multi-device programming in
mobile contexts. Tillman et al. [56, 57] introduced TouchDe-
velop, a mobile programming environment powered only by
touchscreen interactions on the phone. Nguyen et al. [44]
explored a similar approach for on-phone debugging. More re-
cently, Husmann et al. [22] examined pathways for supporting
developers’ multi-device use in stationary “ad hoc scenarios”,
e.g., while at a cafe. Our work complements this prior research
by focusing specifically on mobile contexts in which the user
may have limited attention or brief moments of downtime.

Microproductivity and Microtasks
Microproductivity, where smaller parts of a large task are com-
pleted through Microtasks, has recently emerged as a strategy
for increasing the breadth of information work that can be
conducted on mobile devices. Microtasks, defined as smaller
tasks decomposed from a larger task into more manageable and
meaningful units, present opportunities for getting useful work
done in short bursts of time that is generally considered unus-
able [54]. Research has demonstrated the utility of microtasks
by comparing them to their macrotask counterparts, showing
microtasks are more resilient to interruptions [8], yield higher
quality work [8], can be used to scaffold the cognitive process
of maintaining and rebuilding context for complex tasks [7,
28, 50] and make tasks more engaging [19]. Prior work has
explored how microtasking can improve the writing process
in groups [54], from devices with small screens [43], and for
individuals working on their own edits in short bursts of time
[23]. Microtasks have also been used to orchestrate teams of
actors for specific purposes, such as peer production [60] or
scheduling meetings [12], and have been used to systemati-
cally perform taxonomy creation [10], for copy-editing [4]
and to capture local knowledge [59]. Designing experiences
for these scenarios has been explored [30].

Research has shown that programming can benefit from
microproductivity-like practices through the lens of crowd-
sourcing [37], where software development tasks are decom-
posed into decontextualized units such as: reviewing, testing,
and debugging [33, 36]. Work has shown that proper coordina-
tion of crowdwork can overcome traditional knowledge shar-
ing challenges in software teams [34]. The literature, however,
has yet to bridge the gap between crowdsourced programming,
and on-the-go work for individuals. More specifically, there
exists little research on how individuals can continue their
own software development work across multiple devices and
across different attentional states. Unlike prior crowd-powered
programming systems, the tool presented here is a selfsourc-
ing [55] tool that allows programmers to source microtasks
to themselves while away from their workstation (i.e. based
on their own source code). Building on prior microtask defi-
nitions, we introduce new programming microtasks designed
specifically for the programming context. Speaking to its nov-
elty, our tool enables a new mobile work practice, allowing
programmers to continue their work in a low-effort fashion.

Task Resumption
Finally, as noted in the introduction, we interviewed devel-
opers and learned that their existing mobile practices were
often intended to support task resumption. Past research has
shown that task resumption is a general challenge for many
information workers, and that a task’s difficulty can double

after resuming from an interruption [13]. Task resumption
is especially challenging for software developers. In a study
across multiple large software companies, Solingen et al. [61]
observed developers typically required upward of 15 minutes
to recover from an interruption, and spent an hour a day man-
aging interruptions. Likewise, a 2006 study on programmers
at Microsoft showed that 62% of the 186 respondents believe
interruptions are a serious problem for their productivity [38].
Researchers have explored programmers’ resumption strate-
gies for interrupted tasks, showing that most programmers’
resumption lag – the time spent mentally preparing to resume
a task – lasts more than a minute [49]. As such, prior work
has evaluated the utility of visual cues based on file navigation
in supporting resumption, finding that programmers generally
prefer cues that visualize chronological use [29, 48, 47]. The-
ories of cognition hypothesize that this resumption lag can be
reduced with appropriate planning and rehearsal [1, 58, 63].
Here, we hypothesize that self-sourced programming micro-
tasks have the ancillary benefit of planning and rehearsal, and
that this facilitates one’s return to their primary workstation.

In summary, past work has shown that information workers
routinely use multiple devices throughout the day, but that
some classes of work, including programming, are difficult
to perform on mobile devices. Microproductivity and self-
sourcing has emerged as a technique to broaden the range of
work that can be done when mobile. In this paper, we apply
these learnings to the domain of software engineering by build-
ing a microproductivity tool that supports programmers’ task
continuation and task resumption needs.

PRE-STUDY: CONTEXTUAL INQUIRY
Before designing a system to empower programmers mobility,
we need to better understand programmers’ existing mobile
work practices and how they complement work practices on
primary work devices. We conducted a contextual inquiry [64]
to address these questions.

Contextual Inquiry Methods
We recruited 10 software engineers (eight male / two female)
at a large software company. Each participant was visited
in their personal workspace while they were performing a
programming-related task (e.g., prototyping, implementing, or
debugging). Each inquiry was conducted by one researcher,
and lasted approximately one hour. The researcher took writ-
ten notes, and interviews were audio recorded. Participants
were compensated with $10.00 for their time.

To get insights into opportunities for integration of mobile
devices into the programming ecosystem, we designed an
interview structure that focused on situations that take indi-
viduals out of their workplace and require them to pause their
work. The researcher initiated the inquiry by explaining our in-
terest in understanding how they work within their workspace.
During the inquiry, each participant was told they would be
asked to stop working and briefly chat about their mobile work
practices 15 minutes after the inquiry had started. This sim-
ulated a planned interruption. Participants were interrupted
to chat again 45 minutes after the inquiry had started, but
were not given advanced notice of this interruption, simulating
an unplanned interruption. In both cases, participants were
asked to discuss their mobile work practices and their usage

Table 1: Currently practiced mobile tasks.

Task Description
Thought Capture Writing down or recording general thoughts and

ideas related to programming tasks.
Email Using email for a programming-related task (in-

cluding emailing content to self).
Online Research Searching or browsing the internet for information

related to a programming task.
Bug Triage Documenting and reporting on bugs.
Code Review Reviewing or commenting on existing code.
Debugging Fixing and testing existing code.
Programming Creating and writing code.

of artifacts around the workstation in the context of these in-
terruptions. Participants were also asked about other scenarios
that might unexpectedly take them away from their workspace.

The inquiry was concluded with a 10-minute semi-structured
exit interview to better understand existing mobile work prac-
tices. Interviews began by asking participants to further dis-
cuss practices they described earlier in the inquiry, elaborating
on the strengths and shortcomings of these practices in accom-
plishing work on-the-go. Upon concluding this phase of our
study, audio recordings were transcribed. Excerpts were iter-
atively organized into themes following the practice of open
coding and affinity diagramming [39].

Contextual Inquiry Findings
Three key themes emerged: 1) participants often engage in
activities outside of their primary workspace to make progress
of software development tasks using mobile devices, but they
rarely interact with code; 2) their existing practices require
better support for continuation of programming tasks; and, 3)
because of the difficulties in task continuation across devices,
they minimize what they need to resume after both mobile and
non-mobile work experiences.

Understanding Mobile Work Practices
Table 1 lists details of the programming-related tasks par-
ticipants reported currently performing from mobile devices.
Other than Email, the two most common task types were On-
line Research and Thought Capture. Online Research tasks,
reported by 6 participants, focus on identifying valuable direc-
tions for future programming-related tasks:

“It’s almost like priming the pump when I start my day, but
sometimes it’s like I just don’t know how to do this.” (P9)

Examples of online research tasks described by participants
include searching for relevant Stack Overflow web pages, read-
ing technical documentation online, and watching technical
tutorial videos. Thought Capture tasks, reported by five partic-
ipants, focus on opportunistically recording ideas. Examples
include writing notes in a physical notebook or on their phone.
Four participants reported occasionally reviewing code and
tracking bug reports while on-the-go, but expressed a strong
dislike for “the awful user interface” (P3). Only one partici-
pant reported debugging and programming on their phone.

Participants were excited to extend their current mobile work
practices with tasks that generally enrich their source code.
The most commonly desired tasks identified by four partic-
ipants were code review and the ability to quickly capture

thoughts that “come at the wrong time” (P5), such as while
driving. One participant (P2) wanted to monitor long-running
compilation processes, while another (P4) expressed an inter-
est in using design-oriented tools on-the-go. Three participants
highlighted debugging and programming as tasks they would
“never” want to do on the mobile phone. Most identified poor
user experience as the primary barrier behind adopting mobile
tasks into their personal mobile work practices.

Understanding Cross-Device Continuation
Participants reported challenges with information transfer
across devices. Email was used as the primary mechanism for
transferring information, typically from their mobile device to
their primary workstation:

“I emailed myself a few links last night to get them off
my plate. It would’ve been great to have them open
automatically when I arrived this morning.” (P7)

Using email as a way to continue work relevant to program-
ming adds extra steps in linking the content back to the primary
coding environment. Participants did not report continuing any
programming related tasks on their mobile device, primarily
because there is no effective functionality for doing so.

Understanding Task Resumption
Almost all participants (8) deferred pausing their work until
they came to a good break point to minimize the resumption
overhead upon return:

“I’m more likely to stop where it’ll take less energy for me
pick back up. Otherwise, it’ll take me longer to connect
to the project when I come back.” (P4)

Other participants described similar strategies such as “delay-
ing lunch to continue working on the implementation” (P1)
and “leaving work a few hours early because I can’t finish it
before the end of the day” (P7).

Though resumption of work after some time had passed is chal-
lenging, participants did not appear to leave explicit cues in
their environment to help them with resumption. Participants
stated they “might jot down a word or two if its extremely
important” (P2). Four participants believed nothing they could
do would make resumption easier, noting that “resumption
sucks, but I don’t think anything can be done to improve it”
(P8). The other six were more optimistic. For example, P2 –
who currently has no mobile work practice – said:

“If you find something that will help me keep the context
alive, I’ll definitely start using my phone this way.” (P2)

From the contextual inquiry we see opportunities for more
flexibility in task execution and easier task resumption if users
are provided support to continue work in some capability while
they are away from their primary workspace. This inspired
us to further explore the promise of using mobile devices to
complement existing programming practices.

PRE-STUDY: ONLINE SURVEY
The programmers in our Contextual Inquiry reported using
their mobile devices for some tasks and described practices
around task continuation and resumption. We conducted an
online survey to understand these themes better and generalize
them across a broader range of people.

Figure 2: Histogram of existing and desired mobile practices.

Online Survey
We recruited 78 participants (68 male / seven female / two non-
binary) by randomly sampling a company-wide employee list
of individuals with job roles that regularly involve program-
ming, including software engineers (70), electrical engineers
(3), program managers (2), site reliability engineers (2), and
data scientists (1). Participation was voluntary. 71 participants
(91%) held at least a college degree, and had three or more
years of experience in their current job role. Ownership of a
mobile smartphone was the only requirement for participation.

The survey began by asking participants to identify the
programming-related tasks that they currently practice while
mobile from the task list shown in Table 1, including choices
for “Nothing” and “Other.” If participants indicated engage-
ment in any mobile programming tasks, they were also asked
to provide additional information about the last time they
performed the task while mobile. The survey also asked par-
ticipants to reflect on a programming project that they had not
worked on for longer than a month, and estimate the amount
of time they would need to feel prepared enough start making
progress. Participants were asked to indicate artifacts they
would utilize when resuming the task, and whether they be-
lieve the resumption overhead for the task could be reduced
with proper tooling. To more concretely understand oppor-
tunities for future systems, the survey concluded by asking
participants to report the utility of a system that allowed them
to perform their desired work practices at their own leisure
and seamlessly continue work across their devices. Utility
was measured with a subset of questions of the Technology
Acceptance Model [14], aimed at measuring perceived useful-
ness. A copy of the survey questionnaire is included with this
publication as supplementary materials.

Online Survey Findings
Extending our analysis of the three themes from our contextual
inquiry, we find that 1) participants’ existing mobile work prac-
tices are mainly exploratory while their desired work practices
are more grounded; 2) continuation is primarily facilitated
through email by transferring captured thoughts and online
research; and 3) resumption of interrupted work is facilitated
with their mobile work practices.

Understanding Mobile Work Practices
We find clear separation between the practices that respondents
currently employ and those they desire. Consistent with the
Contextual Inquiry, the most frequently reported tasks for
existing practices were Email (78), Online Research (50), and
Capturing Thoughts (43). The other four task types (and
“Other”) were all reported far less often, with 20 respondents
saying they do no mobile tasks. Existing practices are mainly
exploratory tasks that support ideation and planning.

In contrast, participants’ desired work practices are concen-
trated on actionable tasks that are much more grounded in
existing artifacts. The most frequently desired tasks included
code review (29) and bug triage (23). While the remaining
tasks were desired by fewer than 25% of the 78 participants, 19
participants expressed a desire for capturing thoughts on-the-
go as a means for enriching existing source code. Collectively,
we use exploratory and grounded tasks to describe our partici-
pants’ existing and desired mobile work practices. We do not
consider email as its primary use was acting as an information
channel between devices.

Understanding Cross-Device Continuation
Respondents’ existing practices of Thought Capture and On-
line Research require effective mechanisms for transferring
and synchronizing data to integrate the progress made while
mobile back into the primary workspace. As we found in
our Contextual Inquiry, email was the most commonly used
mechanism for transferring information across devices. In re-
flecting on a recent experience, 19 of the 43 respondents who
reported Capturing Thoughts (44%) indicated they used email
to transfer brief notes from their mobile device to their primary
workstation. 16 respondents (37%) reported using mainstream
task management software (e.g., OneNote, Wunderlist) that
facilitate cross-device synchronization. The remaining 8 re-
spondents indicated that they left the information on their
phone to revisit later, but did not remember to revisit it.

Similarly, 20 of the 50 respondents who conducted Online
Research (40%) indicated that they used email to transfer their
researched information (e.g., URLs) to themselves. 16 respon-
dents (32%) said they retained information in their working
memory (e.g., “keep it in my brain cache” (P45)). Other less
common strategies included creating browser bookmarks, writ-
ing notes on paper, and sending the information to someone
else. All respondents used online research to address a partic-
ular problem on their mind. All but one used a search engine
for their research.

Understanding Task Resumption
Respondents reported employing mobile work practices to
also counteract the effects of pausing work on their primary
workstation. For example, a common theme that emerged
from respondents who used email is it acts as a mechanism for
maintaining and refreshing context while on-the-go and upon
returning to the workstation:

“It keeps me updated with progress and reduces the time
to catch up when I return to my desk.” (P34)

Thought capture and performing online research similarly
helps maintain context which in turn supports resumption.

Figure 3: Percentages of resumption time estimates binned by the time passed
since pausing the programming task.

Alongside their practices, we find that our participants rec-
ognized the amount of time needed to resume programming
work. We asked them to estimate the amount of time it would
take to resume a programming task that they last accessed:
one week ago, two weeks ago, etc., up to more than a month
ago. Figure 3 shows the aggregate responses. Across each
time interval, participants’ most frequently estimated it would
take at least five minutes for them to feel prepared, and even
longer for tasks paused for longer than three weeks. To that
end, 69 of the 78 participants (88%) said that access to proper
tooling could decrease their reported estimated resumption
time, highlighting the opportunity to explore systems that help
programmers resume their tasks more effectively.

Summary of Findings: Contextual Inquiry & Online Survey
Our two formative studies suggest that programmers leverage
mobile devices to make progress on software development
tasks, but do not write code on-the-go. Their existing mobile
work practices are primarily exploratory, while their desired
work practices are grounded in existing code. Email is used
as the primary mechanism to continue progress across devices
- where captured thoughts and online research elements are
transferred from the mobile device to the workstation via email.
Programmers prepare for resumption by minimizing what they
need to resume and use their mobile work practices to keep
context alive while away from their workstation.

MERCURY, A MOBILE PROGRAMMING TOOL
Based on our findings from our formative studies, we designed
and built Mercury, a microproductivity system integrated with
Visual Studio Code (VSCode) that automatically generates
mobile-friendly, short programming-related tasks, or micro-
tasks [8], to support programmers’ needs and desires for con-
tinuation. When a user decides to go mobile, Mercury uses the
current state of their files to generate microtasks that can be
routed to the user to make meaningful progress in their work
while they are away from their workstation. Users access these
microtasks from their mobile device using the Mercury mo-
bile app (see Figure 5) and can complete their auto-generated
microtasks at their own pace and leisure. Here, we detail Mer-
cury’s architecture and its approach to generating microtasks.

(a) Step 1 of Exploratory Microtasks ask the user to determine the relevance of (b) Step 2 of Exploratory Microtasks allow the user to add a brief note to add
a web resource for an unimplemented function. context to resources they find useful for a function’s implementation.

(c) Step 1 of Grounded Microtasks ask the user to assess the behavior of a
function with a particular set of function parameters.

(d) Step 2 of Grounded Microtasks allow the user to add a brief note to add
context to a set of function parameters that cause the function to fail.

Figure 4: Mercury’s microtasking interface supports two types of microtasks: (1) Exploratory Microtasks and (2) Grounded Microtasks. For each microtask, the
interface shows the function’s name (top-left), the function’s origin file (top-right), the function’s content (editor), and the microtask’s task space (white block).

Microtask Generation
Mercury automatically generates microtasks based on the func-
tions in users’ source code. Functions are inherently com-
partmentalized to separate and scope source code, making
them suitable candidates to surface in attention- and resource-
constrained environments. Further, the use of function-based
approaches is well-supported by prior research that has demon-
strated its utility in crowdsourcing scenarios [35].

Mercury introduces two, novel selfsourcing microtasks based
on the paradigms of mobile work identified in our formative
studies: exploratory microtasks and grounded microtasks. To
design these microtasks based on functions in users’ source
code, we leverage “The Function Design Recipe” [18], a six-
step process used for teaching function design in software
engineering curricula. Specifically, our microtasks are inspired
by function templating (step 4), and function testing (step 6),
which correspond to preparing a function’s implementation
and reviewing a function’s execution respectively.

Mercury’s microtask generation procedure is powered by a cus-
tom source code parser that extracts each function’s attributes,
including location, name, parameters, body, and, if available,
associated documentation. Importantly, the procedure relies
on the presence of a function documentation string (docstring)
in order to generate microtasks for a particular function. Mer-
cury’s parser was designed to specifically seek out docstrings
in the JSDoc format, an industry standard already used by
professional developers. We now detail the procedural aspects
of generating Mercury’s microtasks in depth.

Exploratory Microtasks
Exploratory microtasks (EMs) are two-step microtasks for
functions with empty function bodies (e.g., function stubs). In
the presence of such functions, Mercury first uses a regular
expression to extract the function’s description from its doc-
string. The description is then used as a query to Bing where
the top-N web results from either a question-answering site
(e.g., StackOverflow) or a documentation site (e.g., MSDN,
MDN) will be converted into templated EM tasks. The first
step of each EM asks users if the surfaced web resource is
useful for the function’s implementation. Users can tap on
the resource to open the page in a modal window within Mer-
cury’s UI. Throughout this process, users have an opportunity
to rate the utility of each resource (useful / not useful). Rating
a resource initiates the second second step of the task, which
asks users to optionally explain why the resource is useful.
Upon submitting the response, the Mercury system injects the
resource’s URL and the user’s note back into the associated
function’s docstring. As no convention exists for formatting
URLs in source code, the resource URL was formatted to
match the most commonly observed format in a recent large-
scale analysis of hyperlinks in source code comments [21].
An example is shown in Figures 4a and 4b.

Grounded Microtasks
Grounded microtasks (GMs) are two-step microtasks that are
generated for functions with content. When encountering such
functions, Mercury will auto-generate GMs for a function by
determining the type of its parameters and their purported use
within the function, as documented by the function’s docstring
and signature. Using this information, Mercury generates

Figure 5: Mercury’s architecture supports four stages of interaction.

a set of parameters specifically for this function to serve as
a test case. Test cases are randomly selected from a list of
common edge-cases, such as empty strings and null object
references, per the Function Design Recipe. In the first step
of each GM, users are asked to determine if the function will
execute correctly with a given set of parameters (see Figure
4c). If the user indicates that the function will fail execution,
they proceed to the second step of the task where they are
allowed to optionally explain why the test case fails (see Figure
4d). Upon submission, Mercury injects the test-case and the
optional explanation into the associated function’s docstring.

Queuing, Sequencing, and Completing Microtasks
After generating microtasks, Mercury dynamically constructs
a microtask queue for the user. Mercury’s strategy for ordering
microtask queues is based on principles of working memory
[2]. While users are actively programming on their worksta-
tion, Mercury maintains a ranked list of functions ordered by
the amount of time since being edited or seen for more than
10 seconds. When transitioning to a mobile device, Mercury
uses this information to route a microtask associated with the
function the user was most recently working on. Beyond the
first task, Mercury uses a standard round-robin algorithm to
distribute attention across the functions found in the user’s
workspace. Importantly, Mercury allows users complete their
queued microtasks at their own pace and does not require users
to exhaust their queue before returning to the workstation.

System Architecture
Mercury is composed of two primary sub-systems: 1) a Mete-
orJS web application that manages all web requests, serves the
front-end mobile experience, and handles information synchro-
nization between web clients and a Mongo NoSQL database;
and 2) a VSCode plugin that converts the VSCode workspace
into a web client that shares workspace state with the server.

Data and Synchronization Model
Mercury’s data model is file-centric and based on the princi-
ples of file-based cloud storage. Upon starting VSCode, the
plugin will authenticate with the user and immediately syn-
chronize the editor’s workspace files and directories with the

server. Through the plugin, changes in the VSCode editor are
immediately propagated and synchronized to the server and
to Mercury. Similarly, any change made through Mercury’s
task interface will be propagated to the server and to VSCode.
Alongside files, Mercury stores and synchronizes the user’s
mobile tasks, their state (i.e., whether or not they are at their
workstation), and any interaction they have with the system.

USER STUDY: METHODS
Following established practices for evaluating cross-device
systems [6] and tools to support software engineering [32], we
designed and conducted a “first-use” study [20] to understand
Mercury’s successes and shortcomings as a tool for supporting
programmers’ mobile work practices.

Experimental Design
We conducted a lab study that was inspired by recent research
that found developers regularly experience unplanned “short
breaks” throughout their workday [40]. Specifically, these
types of breaks can last upward of 15 minutes, and often yield
scenarios in which individuals are forced to spend time away
from their workstation. To better allow our lab study to speak
to Mercury’s practical utility, we adopted the temporal and
unexpected nature of these breaks to frame our study design.
The study required participants to work on a predefined pro-
gramming task on a workstation, leave the workspace for 30
minutes with a mobile device and then return to the worksta-
tion to complete the task. The study lasted approximately 1
hour and 30 minutes and was split into three 30-minute phases:

Phase I: Starting the Task
After reading the task instructions, participants were told to
work toward the implementation of the study’s programming
task for the next 30 minutes, and were told they would be
given a mobile device to use “a new mobile experience for
progammers” while they were away from the workstation. Par-
ticipants worked uninterrupted during this 30-minute period.

Phase II: Going Mobile with Mercury
After 30 minutes participants were interrupted and told that
they would now need to leave the room. They were given

a Samsung S8 smartphone that had access to Mercury and
was configured with their participant identifier to ensure syn-
chronization. At the time of interruption one researcher ad-
ministratively triggered Mercury’s task generation function to
simulate a seamless transition between devices. Participants
were instructed to use Mercury’s mobile experience during the
next 30 minutes from the building’s atrium and asked to return
to the study room to continue their implementation after the
the 30 minutes had passed.

Phase III: Returning to the Task
Upon returning to the study room, participants were told to
place the smartphone face-down on their desk and continue
working toward the implementation of the study’s program-
ming task. After 15 minutes of continued work, they were
told that the task was over; only one participant (P35) finished
the task in this time. Participants were then given a post-study
questionnaire and told that we would follow up within 24
hours to conduct a semi-structured post-study interview.

Programming Task
Participants were asked to complete a HTML5/CSS/JavaScript
implementation of an enhanced version of Tetris that intro-
duced portals, following prior research that has used classic
arcade games as an implementation task in studies [47]. In
this version, an entry portal and a corresponding exit portal
automatically spawn on the Tetris game grid. When a game
piece is adjacent to the entry portal, the piece’s next move
should transfer the adjacent pieces to the exit portal’s location.

As the study task, participants were given four functions to
implement in the Tetris codebase, three of which focused on
portal validation and one of which focused on locating portals
on the grid. All four function implementations were blank
at the start of the study. If all four functions were correctly
implemented, both portals would function correctly. To facili-
tate Mercury’s integration with the codebase, all functions in
the source code were documented with the JSDoc standard.
Pilots of our study confirmed that the task was challenging, yet
feasible. Participants were given five minutes to read through
the task instructions before being allowed to begin the task.

Mercury was configured to create five microtasks for each of
the task’s four functions, totaling in a queue of 20 microtasks
for each participant. The type of microtasks generated for
each function were contingent on its “completeness”. We used
the number of lines in a function’s body at the time of going
mobile as a proxy. Grounded microtasks were created for
functions whose body included more than five lines of code.
Otherwise, Mercury recognized the function as incomplete,
and would create exploratory microtasks for the function.

Data Collection
We collected the following data as a part of the study:

Pre-Study Questionnaire
We inquired about participants’ gender, job role, and experi-
ence. We also inquired about the practices from Table 1.

Instrumentation Data
We tracked participants’ actions with screen capture software,
and by logging low-level events within Mercury.

Post-Study Questionnaire
Before concluding the study, we administered a questionnaire
that included three validated instruments: 1) the System Us-
ability Scale (SUS) [5] to measure Mercury’s usability, 2) a
5-point reattachment questionnaire for measuring participants’
ability to mentally reengage with the task [52], and 3) a 5-point
PANAS-inspired scale to measure how productive, engaged,
and relaxed the participant felt while they were away [62, 63].

Post-Study Interview
We conducted a 20-minute semi-structured post-study inter-
view with each participant. The interview began by asking
participants about the experience in general alongside the util-
ity of each microtask, and transitioned into Mercury’s effect on
participants’ ability to return to the task. Interviews concluded
by inquiring about Mercury’s practical utility.

Participants
20 participants (18 male / two female) were recruited by ran-
domly sampling the same company-wide employee list of
individuals with programming job roles used in both the Con-
textual Inquiry and the Online Survey. Job roles of those
recruited include software engineer (18) and software engi-
neering intern (2). Participants’ ages included 18-24 (3), 25-34
(7), 35-44 (9), 45-55 (1), and participants’ years of experience
included 3-5 years (4), 5-10 years (6), and 10 or more years
(10). Participants were compensated with a $50 gift card.

USER STUDY: FINDINGS
Overall, our user study results highlight how Mercury en-
hances mobile programming experiences. Participants found
value in Mercury’s interface and were able to make meaning-
ful progress with little effort or attention. Mercury supported
continuation of tasks across devices with seamless transfer
of task progress, and interacting with Mercury’s microtasks
enabled participants to easily resume coding upon returning to
their workstation. The utility of Mercury’s tasks understand-
ably varied between individual’s and their unique contexts.
We discuss themes from our user study and evaluation below.

Supporting Mobile Work Practices
Most participants (17 out of 20) enjoyed Mercury’s
microproductivity-inspired task design as it required “little
attention to make progress” (P9). Participants’ post-study
questionnaire responses indicate that the experience allowed
them to feel productive (M=3.8; SD=0.9), engaged (M=3.8;
SD=0.7), and relaxed (M=4.1; SD=0.9) while mobile. The pos-
itive reception is also supported by Mercury’s favorable SUS
scores (M=77.5; IQR=11.8). Only two participants voiced
complaints related to device constraints, stating that “the de-
vice made it difficult to read code” (P18) and that “the expe-
rience suffered from the same pitfalls as any mobile devel-
opment environment” (P16). On average, participants used
Mercury to complete 17 microtasks during the study. The
average time per microtask was 74 seconds. No significant
difference was observed between Mercury’s microtask types.

Exploratory and Grounded Microtasks
The exploratory (EMs) and grounded (GMs) microtasks re-
ceived positive feedback from participants, with four partic-
ipants finding both to be useful, six participants liking GMs

better, and seven preferring EMs instead. On average, partici-
pants identified 60% of the web resources from Exploratory
Microtasks as relevant, and indicated 90% of the test-cases
from Grounded Microtasks identified issues they could correct
upon returning to their workspace. Only three participants
found neither to be particularly helpful, yet the premise of the
system was still seen as promising and beneficial:

“Both tasks are great ideas. They’re great first-steps
toward being able to mobilize myself in a new way.” (P16)

Participants evaluated the utility of EMs on one primary char-
acteristic: resource relevance. As with any online search,
participants found “some references applicable and useful, but
toward the end, they seemed less relevant” (P2).

Participants who found EMs useful (14 of 20) expressed sym-
pathy for the relevance problem, highlighting that “I’d be
seeing the same noise if I did my own search” (P4) and any-
thing more accurate would “win us the Nobel prize”. The
noise was not always bad: four participants recounted how
EMs reoriented their understanding of a problem they were
stuck on, thanks to a surprising resource.

“One online research task made me realize the implementa-
tion was just an array intersection problem. It kept it in my
head, especially when it framed the problem for me. I knew
exactly what I was going to do when I got back.” (P15)

This particular participant’s experience further highlights the
importance of relevance for online research as it suggests sur-
facing the right resource may stoke individuals’ resumption.
In addition to accessing online resources, six participants sug-
gested adding support for team communication channels to
leverage the expertise of teammates in various scenarios.

For GMs, participants were excited about the ability to reex-
amine their code in a different setting. Their appreciation of
GMs were centered on the task’s ability to “introduce edge
cases that I didn’t even think of while coding” (P15). The
few participants that did not find GMs useful described the
automatically generated test cases as “too simple” (P14) or
“repetitive after a point” (P17). However, participants’ remarks
were clear that the tasks would have been useful had they
surfaced test cases “of the right complexity” (P9). Eighteen
participants offered explicit accounts of how GMs could be
situated in their current work practice within their team:

“The ability to pull in reviewers and use canned com-
ments, add voice commentary, highlight code, and look at
diffs on-the-go. I think that would be a huge thing.” (P4)

Participants also noted the ease of completing these tasks using
Mercury. They even suggested that Mercury could improve
systems that already support mobile code review in some form
(e.g., Visual Studio Team Services), to be more user-friendly:
“Mercury created a mobile experience that would be generally
easier and more enjoyable to use in a team setting” (P3).

The three participants who found neither GMs or EMs to
be useful noted that their issue was with the specific tasks
they saw, but expressed interest in an experience that would
have helped them “start with algorithm design” (P10), “sketch
or focus on something design-related” (P13), or “refresh my
mind with creative ideas” (P1).

When Mercury Would Be Used
After using Mercury, participants had no shortage of imagining
how the system could fit into their daily work practice:

“With Mercury, I can step away from the terminal and
take a break, have a coffee, go outside. I’m not tethered to
the desk as much as I would be, and I can still accomplish
meaningful work.” (P4)

Participants voiced excitement in using Mercury to continue
their work “when you want to productive” (P14), “when you
don’t really need to pay attention” (P12), and “when you have
nothing better to do” (P2). 18 participants noted commutes in
public transport as a key setting for continuing work:

“I’ve got 45 minutes to kill on the bus each way between
home and work. If I’m still thinking about some work,
the end of the workday would be great if I can eke out
some additional productivity on the way home.” (P16)

Discussed by 16 participants, the second most common set-
tings cited were brief moments that involve waiting in the
workplace, such as waiting for a meeting to start, waiting in
line to order lunch, and even bathroom breaks. Similarly, set-
tings that involve waiting outside of work, such as doctors’
offices, were also mentioned by participants.

Participants had mixed feelings about how Mercury might
affect their work-life balance. Six expressed an interest in
using Mercury as a means for capturing lingering thoughts
that stem from their workday.

“Sometimes, you come home, and you’re still attached to
work. Your kids (are) trying to play with you. If Mercury
is easy enough to capture a thought to let me give my kids
the attention they need, I’d be excited to use it then.” (P12)

The other five bolstered the need to simply capture a quick
thought as a result of the right thought coming at the wrong
time (e.g., “while I’m brushing my teeth” (P11)). Conversely,
three participants voiced a concern of “working 24/7.” (P1).
We expand on this theme later, in the Discussion section.

Supporting Cross-Device Continuation
All 20 participants liked being able to continue their work
while away from the study’s workstation, and, in particular,
appreciated how Mercury helped them transfer information:

“Getting information between devices is usually the prob-
lem. Mercury kind-of helps this by handling the synchro-
nization.” (P16)

Participants liked having mobile access to code that had re-
cently been written on the desktop and being able to synchro-
nize information across devices without having to remember
to do particular actions (e.g., a repository commit).

Mercury’s guided nature was a thematic point of discussion
for each participant. Five participants expressed satisfaction
with the guided aspect of Mercury’s mobile experience:

“It was nice because I felt like it was intuitively looking
for things I probably would’ve looked for anyway.” (P20)

Other comments in support of a fully autonomous process
described Mercury’s process as one that “was nice to supply

guideposts”, “required little input” (P16), “gamified because
you didn’t know what was coming next” (P15).

Participants expressed appreciation for Mercury’s guided na-
ture and ready-made, on-the-go tasks, and provided recommen-
dations for how these could be improved with personalization:

“There’d be times when I want the system to autopilot
me. Other times, I’m a control freak, and I want to be
able to say, ‘Now is the time I do this’.” (P4)

They suggested thematic pathways that would make the mobile
experience more useful for them both during the study and in
practice, such as the ability to tell Mercury which function to
focus on while mobile, the ability to “mark a function to view
directly on Mercury” (P17), and support for task navigation
(e.g., skipping and revisiting). Overall, participants found it
easy to envision how Mercury could be a part of their usual
work routine, and were excited to offer feedback that could
help shape the system further.

Supporting Task Resumption
Reattachment questionnaire reports suggest Mercury posi-
tively affected participants’ resumption processes (mean =
15.5; IQR = 3.4). 16 participants offered positive accounts
of how Mercury helped them resume the Tetris task when
they returned to the study workstation. When participants
recounted their experience with Mercury in the post-study in-
terview they said the experience “helped keep things available”
(P9), “kept your mental process warm” (P14), and “felt like it
greased my mind’s wheels” (P11). In discussing how partici-
pants imagined the system’s ability to help with resumption in
unexpected scenarios, 11 participants highlighted that it would
add comfort if participants needed to leave unexpectedly:

“Mercury would make me feel more comfortable if I need
to walk away momentarily and come back. It would help
bring down the ramp-up time time when I get back to my
workstation, and I can just go and code right away.” (P12)

Five participants specifically stated their resumption with the
Tetris task was facilitated not only by being able to continue
the work on-the-go, but knowing the first step they would take
when they returned to the study workstation. These statements
were corroborated by their screen recordings in which we
observed each participant referencing a source-code change
made by Mercury upon their return and subsequently acting on
it (e.g., copy-and-pasting a resource URL into their browser).

DISCUSSION
Our study provides insight into understanding the role of mo-
bile programming tools in practice. Prior research targets
how mobile programming can be enhanced with novel touch-
based interfaces for the cumbersome nature of text entry on
mobile phones [56, 57], and cross-device techniques for sup-
porting programmers across multiple mobile devices while
stationary [22]. Here, we find that a mobile work experience
designed around microproductivity can not only help program-
mers continue their work on-the-go, but also instill comfort
in pausing work unexpectedly. We also see that programmers
feel like they can make meaningful progress in their work with
Mercury’s microtasking experience in scenarios ranging from
brief moments of downtime to the daily commute. Further,

we observe that engaging with programming-related tasks via
Mercury spurs users’ ability to resume their work.

Mercury’s microtask designs were driven by the mobile task-
ing needs and desires observed in our formative studies. An
ideal microtask is contextually self-contained, requires little
effort to complete, and helps people make progress [23], and
Mercury’s microtasks were designed with these principles
in mind. However, we find the utility of Mercury’s micro-
tasks is firmly grounded in the programmer’s work context.
For example, a small number of users expressed a desire for
design-oriented microtasks. While we explored only two types
of microtasks in our exploration of microtasked programming,
a framework like Mercury allows us to design and test dif-
ferent experiences, providing an important first step toward
empowering programmers’ with microproductivity in the wild.

Our research suggests that Mercury helped kindle participants’
resumption processes. In our user study, we find that giving
our participants the ability to mobilize their work on-demand
helps them feel “not as tethered to the desk as much as they
would be” (P4). Understanding how programmers’ behavior
changes with this newfound comfort in moving away from
their workstation is an important direction of future work.
Similarly, the findings from our user study establish a frontier
of future research aimed at exploring the intersection of prior
and current interventions (e.g., visual cues [47, 49] for cross-
device experiences) in support of programmers’ productivity.

Unlike our assessment of Mercury, the majority of microtask
programming research has been studied in the context of teams
of “transient” developers [36, 35]. Several participants in our
user study noted Mercury’s potential value in team settings,
while others were unsure of its ecological utility for teams
with diverse information needs [31]. Exploring how social ex-
periences and larger codebases change the utility of Mercury’s
mobile experience is a key direction of future research.

By enabling programmers to work from their mobile devices
during free micromoments, Mercury has the potential to blur
the lines between work and non-work time. More than half
of our user study’s participants expressed an interest in using
Mercury outside of the workplace. While the overarching goal
of our work is to empower programmers’ mobile work prac-
tices, we recognize the threat that a mobile microproductivity
system like Mercury may pose on encroaching into individu-
als’ downtime. However, we also see how participants were
able to interleave Mercury tasks with other activities. As one
participant notes:

“When I was downstairs in the atrium, I actually felt like
was still making progress even though I wasn’t really pay-
ing attention.” (P12)

An important area of future work should focus on how to
design software tools for task continuation support that also
account for programmers’ need to disconnect from work [63].

Limitations
While our study provides insight into cross-device program-
ming support, there are a number of limitations that require
further study. Mercury’s user study was conducted in a lab
setting. Prior research reinforces lab studies as valuable ap-
proaches to study novel systems, specifically those have cross-

device components that may be challenging to reliably study
in-the-wild [6]. While our lab study’s design was strongly
grounded in observations made in the field, further studies
are needed to claim that the same observations may be seen
in-the-wild or consistently over time.

Our study’s evaluation of Mercury was focused on under-
standing the success and challenges of using a microtask pro-
gramming solution for on-the-go programming. Our eval-
uation does not compare microproductivity tools to non-
microproductivity tools for on-the-go work (e.g., CodeBeat1),
and we make no claim about how the effectiveness of these
tools may differ. However, we recognize this as a valuable area
of future research both for Mercury and future programming
tools that incorporate elements of microproductivity.

Finally, our study’s population consisted primarily of profes-
sional and experienced software engineers at a large technol-
ogy corporation. Mercury may provide different experiences
for individuals that program less frequently in their job roles
or work at smaller companies. Mercury’s mobile experience
also relies on the presence of function documentation. We
recognize that documentation practices may vary among pro-
fessionals and that self-documenting code is not only com-
mon, but often promoted [53]. Future research is needed to
understand how Mercury can be adapted to scenarios where
documentation is significantly limited or unavailable entirely.

CONCLUSION
In this paper, we presented Mercury, a system that guides pro-
grammers in making progress on-the-go with auto-generated
microtasks based on their source code’s current state. We
detailed how the findings from our two studies – contextual
inquiry and online survey – motivated Mercury’s design as
a microtasking system for on-the-go programming work. In
studying Mercury with 20 full-time programmers, we found
that mobile work experiences designed around microproduc-
tivity can help programmers continue their work on-the-go
and instill comfort in pausing work unexpectedly, all the while
making meaningful progress on their work tasks. Mercury’s
success serves as a first step in a family of future software
engineering tools that allow programmers to make progress
on their work away from their primary workstation.

REFERENCES
[1] Erik M. Altmann and J. Gregory Trafton. 2002. Memory

for goals: An activation-based model. Cognitive Science
26, 1 (2 2002), 39–83. DOI:
http://dx.doi.org/10.1016/S0364-0213(01)00058-1

[2] Alan Baddeley. 2000. The episodic buffer: a new
component of working memory? Trends in Cognitive
Sciences 4, 11 (11 2000), 417–423. DOI:
http://dx.doi.org/10.1016/S1364-6613(00)01538-2

[3] Patti Bao, Jeffrey Pierce, Stephen Whittaker, and
Shumin Zhai. 2011. Smart phone use by non-mobile
business users. In Proceedings of the 13th International
Conference on Human Computer Interaction with
Mobile Devices and Services - MobileHCI ’11. ACM
Press, New York, New York, USA, 445. DOI:
http://dx.doi.org/10.1145/2037373.2037440

1https://codebeat.co/

[4] Michael S. Bernstein, Greg Little, Robert C. Miller,
Bjorn Hartmann, Mark S. Ackerman, David R. Karger,
David Crowell, and Katrina Panovich. 2010. Soylent: A
Word Processor with a Crowd Inside. In Proceedings of
the 23nd annual ACM symposium on User interface
software and technology - UIST ’10. ACM Press, New
York, New York, USA, 313. DOI:
http://dx.doi.org/10.1145/1866029.1866078

[5] John Brooke. 1996. SUS-A quick and dirty usability
scale. Usability evaluation in industry 189, 194 (1996),
4–7.

[6] Frederik Brudy, Christian Holz, Roman Radle, Chi-Jui
Wu, Steven Houben, Clemens Klokmose, and Nicolai
Marquardt. 2019. Cross-Device Taxonomy: Survey,
Opportunities and Challenges of Interactions Spanning
Across Multiple Devices. In CHI Conference on Human
Factors in Computing Systems Proceedings (CHI 2019).
ACM Press, New York, New York, USA. DOI:
http://dx.doi.org/10.1145/3290605.3300792

[7] Carrie J. Cai, Shamsi T. Iqbal, and Jaime Teevan. 2016.
Chain Reactions: The Impact of Order on Microtask
Chains. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems - CHI ’16. ACM
Press, New York, New York, USA, 3143–3154. DOI:
http://dx.doi.org/10.1145/2858036.2858237

[8] Justin Cheng, Jaime Teevan, Shamsi T. Iqbal, and
Michael S. Bernstein. 2015. Break It Down: A
Comparison of Macro- and Microtasks. In Proceedings
of the 33rd Annual ACM Conference on Human Factors
in Computing Systems - CHI ’15. ACM Press, New
York, New York, USA, 4061–4064. DOI:
http://dx.doi.org/10.1145/2702123.2702146

[9] Pei-Yu (Peggy) Chi and Yang Li. 2015. Weave:
Scripting Cross-Device Wearable Interaction. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems - CHI ’15. ACM
Press, New York, New York, USA, 3923–3932. DOI:
http://dx.doi.org/10.1145/2702123.2702451

[10] Lydia B. Chilton, Greg Little, Darren Edge, Daniel S.
Weld, and James A. Landay. 2013. Cascade:
Crowdsourcing Taxonomy Creation. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems - CHI ’13. ACM Press, New York,
New York, USA, 1999. DOI:
http://dx.doi.org/10.1145/2470654.2466265

[11] Evans Data Corporation. 2018. Global Developer
Population and Demographic Study 2018, Volume 2.
Evans Data Report (2018).

[12] Justin Cranshaw, Emad Elwany, Todd Newman, Rafal
Kocielnik, Bowen Yu, Sandeep Soni, Jaime Teevan, and
Andres Monroy-Hernández. 2017. Calendar.help:
Designing a Workflow-Based Scheduling Agent with
Humans in the Loop. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems -
CHI ’17. ACM Press, New York, New York, USA,
2382–2393. DOI:
http://dx.doi.org/10.1145/3025453.3025780

http://dx.doi.org/10.1016/S0364-0213(01)00058-1
http://dx.doi.org/10.1016/S1364-6613(00)01538-2
http://dx.doi.org/10.1145/2037373.2037440
http://dx.doi.org/10.1145/1866029.1866078
http://dx.doi.org/10.1145/3290605.3300792
http://dx.doi.org/10.1145/2858036.2858237
http://dx.doi.org/10.1145/2702123.2702146
http://dx.doi.org/10.1145/2702123.2702451
http://dx.doi.org/10.1145/2470654.2466265
http://dx.doi.org/10.1145/3025453.3025780
https://1https://codebeat.co

[13] Mary Czerwinski, Eric Horvitz, and Susan Wilhite.
2004. A diary study of task switching and interruptions.
In Proceedings of the 2004 conference on Human
factors in computing systems - CHI ’04. ACM Press,
New York, New York, USA, 175–182. DOI:
http://dx.doi.org/10.1145/985692.985715

[14] Fred D. Davis. 1989. Perceived Usefulness, Perceived
Ease of Use, and User Acceptance of Information
Technology. MIS Quarterly 13, 3 (9 1989), 319. DOI:
http://dx.doi.org/10.2307/249008

[15] David Dearman and Jeffery S. Pierce. 2008. It’s on my
other computer!: computing with multiple devices. In
Proceeding of the twenty-sixth annual CHI conference
on Human factors in computing systems - CHI ’08.
ACM Press, New York, New York, USA, 767. DOI:
http://dx.doi.org/10.1145/1357054.1357177

[16] Linda Di Geronimo, Maria Husmann, and Moira C.
Norrie. 2016. Surveying personal device ecosystems
with cross-device applications in mind. In Proceedings
of the 5th ACM International Symposium on Pervasive
Displays - PerDis ’16. ACM Press, New York, New
York, USA, 220–227. DOI:
http://dx.doi.org/10.1145/2914920.2915028

[17] Tao Dong, Elizabeth F. Churchill, and Jeffrey Nichols.
2016. Understanding the Challenges of Designing and
Developing Multi-Device Experiences. In Proceedings
of the 2016 ACM Conference on Designing Interactive
Systems - DIS ’16. ACM Press, New York, New York,
USA, 62–72. DOI:
http://dx.doi.org/10.1145/2901790.2901851

[18] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt,
and Shriram Krishnamurthi. 2001. How to Design
Programs: An Introduction to Programming an d
Computing. (2001).

[19] Ujwal Gadiraju and Stefan Dietze. 2017. Improving
learning through achievement priming in crowdsourced
information finding microtasks. In Proceedings of the
Seventh International Learning Analytics & Knowledge
Conference on - LAK ’17. ACM Press, New York, New
York, USA, 105–114. DOI:
http://dx.doi.org/10.1145/3027385.3027402

[20] Bjorn Hartmann, Leith Abdulla, Manas Mittal, and
Scott R. Klemmer. 2007. Authoring sensor-based
interactions by demonstration with direct manipulation
and pattern recognition. In Proceedings of the SIGCHI
conference on Human factors in computing systems -
CHI ’07. ACM Press, New York, New York, USA, 145.
DOI:http://dx.doi.org/10.1145/1240624.1240646

[21] Hideaki Hata, Christoph Treude, Raula Gaikovina Kula,
and Takashi Ishio. 2019. 9.6 Million Links in Source
Code Comments: Purpose, Evolution, and Decay. CoRR
abs/1901.0 (2019). http://arxiv.org/abs/1901.07440

[22] Maria Husmann, Alfonso Murolo, Nicolas Kick, Linda
Di Geronimo, and Moira C. Norrie. 2018. Supporting
out of office software development using personal
devices. In Proceedings of the 20th International
Conference on Human-Computer Interaction with

Mobile Devices and Services - MobileHCI ’18. ACM
Press, New York, New York, USA, 1–11. DOI:
http://dx.doi.org/10.1145/3229434.3229454

[23] Shamsi Iqbal, Jaime Teevan, Dan Liebling, and Anne
Loomis Thompson. 2018. Multitasking with Play Write,
a Mobile Microproductivity Writing Tool (Forthcoming).
In Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology.

[24] Tero Jokela, Jarno Ojala, and Thomas Olsson. 2015. A
Diary Study on Combining Multiple Information
Devices in Everyday Activities and Tasks. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems - CHI ’15. ACM
Press, New York, New York, USA, 3903–3912. DOI:
http://dx.doi.org/10.1145/2702123.2702211

[25] Shaun K. Kane, Amy K. Karlson, Brian R. Meyers, Paul
Johns, Andy Jacobs, and Greg Smith. 2009. Exploring
Cross-Device Web Use on PCs and Mobile Devices.
722–735. DOI:
http://dx.doi.org/10.1007/978-3-642-03655-2{_}79

[26] Amy K. Karlson, Shamsi T. Iqbal, Brian Meyers,
Gonzalo Ramos, Kathy Lee, and John C. Tang. 2010.
Mobile taskflow in context: a screenshot study of
smartphone usage. In Proceedings of the 28th
international conference on Human factors in
computing systems - CHI ’10. ACM Press, New York,
New York, USA, 2009. DOI:
http://dx.doi.org/10.1145/1753326.1753631

[27] Amy K. Karlson, Brian R. Meyers, Andy Jacobs, Paul
Johns, and Shaun K. Kane. 2009. Working Overtime:
Patterns of Smartphone and PC Usage in the Day of an
Information Worker. 398–405. DOI:
http://dx.doi.org/10.1007/978-3-642-01516-8{_}27

[28] Harmanpreet Kaur, Alex C. Williams, Anne Loomis
Thompson, Walter S. Lasecki, Shamsi T. Iqbal, and
Jaime Teevan. 2018. Creating Better Action Plans for
Writing Tasks via Vocabulary-Based Planning.
Proceedings of the ACM on Human-Computer
Interaction 2, CSCW (11 2018), 1–22. DOI:
http://dx.doi.org/10.1145/3274355

[29] Mik Kersten and Gail C. Murphy. 2006. Using task
context to improve programmer productivity. In
Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering -
SIGSOFT ’06/FSE-14. ACM Press, New York, New
York, USA, 1. DOI:
http://dx.doi.org/10.1145/1181775.1181777

[30] A Kittur, J Nickerson, and M Bernstein. 2013. The
Future of Crowd Work. Proc. CSCW ’13 (2013), 1–17.
DOI:http://dx.doi.org/10.1145/2441776.2441923

[31] Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007.
Information Needs in Collocated Software Development
Teams. In 29th International Conference on Software
Engineering (ICSE’07). IEEE, 344–353. DOI:
http://dx.doi.org/10.1109/ICSE.2007.45

http://dx.doi.org/10.1145/985692.985715
http://dx.doi.org/10.2307/249008
http://dx.doi.org/10.1145/1357054.1357177
http://dx.doi.org/10.1145/2914920.2915028
http://dx.doi.org/10.1145/2901790.2901851
http://dx.doi.org/10.1145/3027385.3027402
http://dx.doi.org/10.1145/1240624.1240646
http://arxiv.org/abs/1901.07440
http://dx.doi.org/10.1145/3229434.3229454
http://dx.doi.org/10.1145/2702123.2702211
http://dx.doi.org/10.1007/978-3-642-03655-2{_}79
http://dx.doi.org/10.1145/1753326.1753631
http://dx.doi.org/10.1007/978-3-642-01516-8{_}27
http://dx.doi.org/10.1145/3274355
http://dx.doi.org/10.1145/1181775.1181777
http://dx.doi.org/10.1145/2441776.2441923
http://dx.doi.org/10.1109/ICSE.2007.45

[32] Andrew J. Ko, Thomas D. LaToza, and Margaret M.
Burnett. 2015. A practical guide to controlled
experiments of software engineering tools with human
participants. Empirical Software Engineering 20, 1 (2
2015), 110–141. DOI:
http://dx.doi.org/10.1007/s10664-013-9279-3

[33] Thomas D. LaToza, W. Ben Towne, Andre van der
Hoek, and James D. Herbsleb. 2013. Crowd
development. In 2013 6th International Workshop on
Cooperative and Human Aspects of Software
Engineering (CHASE). IEEE, 85–88. DOI:
http://dx.doi.org/10.1109/CHASE.2013.6614737

[34] Thomas D. LaToza, Arturo Di Lecce, Fabio Ricci, W.
Ben Towne, and Andre van der Hoek. 2015. Ask the
crowd: Scaffolding coordination and knowledge sharing
in microtask programming. In 2015 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 23–27. DOI:
http://dx.doi.org/10.1109/VLHCC.2015.7357194

[35] Thomas D. LaToza, Arturo Di Lecce, Fabio Ricci,
W. Ben Towne, and Andre Van der Hoek. 2018.
Microtask Programming. IEEE Transactions on
Software Engineering (2018), 1–1. DOI:
http://dx.doi.org/10.1109/TSE.2018.2823327

[36] Thomas D. LaToza, W. Ben Towne, Christian M.
Adriano, and AndrÃl’ van der Hoek. 2014. Microtask
programming: building software with a crowd. In
Proceedings of the 27th annual ACM symposium on
User interface software and technology - UIST ’14.
ACM Press, New York, New York, USA, 43–54. DOI:
http://dx.doi.org/10.1145/2642918.2647349

[37] Thomas D. LaToza and Andre van der Hoek. 2016.
Crowdsourcing in Software Engineering: Models,
Motivations, and Challenges. IEEE Software 33, 1 (1
2016), 74–80. DOI:
http://dx.doi.org/10.1109/MS.2016.12

[38] Thomas D. LaToza, Gina Venolia, and Robert DeLine.
2006. Maintaining mental models: a study of developer
work habits. In Proceeding of the 28th international
conference on Software engineering - ICSE ’06. ACM
Press, New York, New York, USA, 492. DOI:
http://dx.doi.org/10.1145/1134285.1134355

[39] Jonathan Lazar, Jinjuan Heidi Feng, and Harry
Hochheiser. 2017. Research methods in
human-computer interaction. Morgan Kaufmann.

[40] Andre N. Meyer, Laura E. Barton, Gail C. Murphy,
Thomas Zimmermann, and Thomas Fritz. 2017. The
Work Life of Developers: Activities, Switches and
Perceived Productivity. IEEE Transactions on Software
Engineering 43, 12 (12 2017), 1178–1193. DOI:
http://dx.doi.org/10.1109/TSE.2017.2656886

[41] Michael Nebeling. 2017. XDBrowser 2.0:
Semi-Automatic Generation of Cross-Device Interfaces.
In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems - CHI ’17. ACM Press,
New York, New York, USA, 4574–4584. DOI:
http://dx.doi.org/10.1145/3025453.3025547

[42] Michael Nebeling and Anind K. Dey. 2016. XDBrowser:
User-Defined Cross-Device Web Page Designs. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems - CHI ’16. ACM Press,
New York, New York, USA, 5494–5505. DOI:
http://dx.doi.org/10.1145/2858036.2858048

[43] Michael Nebeling, Alexandra To, Anhong Guo,
Adrian A. de Freitas, Jaime Teevan, Steven P. Dow, and
Jeffrey P. Bigham. 2016. WearWrite: Crowd-Assisted
Writing from Smartwatches. In Proceedings of the 2016
CHI Conference on Human Factors in Computing
Systems - CHI ’16. ACM Press, New York, New York,
USA, 3834–3846. DOI:
http://dx.doi.org/10.1145/2858036.2858169

[44] Tuan Anh Nguyen, Christoph Csallner, and Nikolai
Tillmann. 2013. GROPG: A graphical on-phone
debugger. In 2013 35th International Conference on
Software Engineering (ICSE). IEEE, 1189–1192. DOI:
http://dx.doi.org/10.1109/ICSE.2013.6606675

[45] Katie O’Leary, Tao Dong, Julia Katherine Haines,
Michael Gilbert, Elizabeth F. Churchill, and Jeffrey
Nichols. 2017. The Moving Context Kit: Designing for
Context Shifts in Multi-Device Experiences. In
Proceedings of the 2017 Conference on Designing
Interactive Systems - DIS ’17. ACM Press, New York,
New York, USA, 309–320. DOI:
http://dx.doi.org/10.1145/3064663.3064768

[46] Antti Oulasvirta and Lauri Sumari. 2007. Mobile kits
and laptop trays: managing multiple devices in mobile
information work. In Proceedings of the SIGCHI
conference on Human factors in computing systems -
CHI ’07. ACM Press, New York, New York, USA, 1127.
DOI:http://dx.doi.org/10.1145/1240624.1240795

[47] Chris Parnin and Robert DeLine. 2010. Evaluating cues
for resuming interrupted programming tasks. In
Proceedings of the 28th international conference on
Human factors in computing systems - CHI ’10. ACM
Press, New York, New York, USA, 93. DOI:
http://dx.doi.org/10.1145/1753326.1753342

[48] C. Parnin and C. Gorg. Building Usage Contexts During
Program Comprehension. In 14th IEEE International
Conference on Program Comprehension (ICPC’06).
IEEE, 13–22. DOI:
http://dx.doi.org/10.1109/ICPC.2006.14

[49] Chris Parnin and Spencer Rugaber. 2011. Resumption
strategies for interrupted programming tasks. Software
Quality Journal 19, 1 (5 2011), 5–34. DOI:
http://dx.doi.org/10.1007/s11219-010-9104-9

[50] Niloufar Salehi, Jaime Teevan, Shamsi Iqbal, and Ece
Kamar. 2017. Communicating Context to the Crowd for
Complex Writing Tasks. In Proceedings of the 2017
ACM Conference on Computer Supported Cooperative
Work and Social Computing - CSCW ’17. ACM Press,
New York, New York, USA, 1890–1901. DOI:
http://dx.doi.org/10.1145/2998181.2998332

[51] Stephanie Santosa and Daniel Wigdor. 2013. A field
study of multi-device workflows in distributed

http://dx.doi.org/10.1007/s10664-013-9279-3
http://dx.doi.org/10.1109/CHASE.2013.6614737
http://dx.doi.org/10.1109/VLHCC.2015.7357194
http://dx.doi.org/10.1109/TSE.2018.2823327
http://dx.doi.org/10.1145/2642918.2647349
http://dx.doi.org/10.1109/MS.2016.12
http://dx.doi.org/10.1145/1134285.1134355
http://dx.doi.org/10.1109/TSE.2017.2656886
http://dx.doi.org/10.1145/3025453.3025547
http://dx.doi.org/10.1145/2858036.2858048
http://dx.doi.org/10.1145/2858036.2858169
http://dx.doi.org/10.1109/ICSE.2013.6606675
http://dx.doi.org/10.1145/3064663.3064768
http://dx.doi.org/10.1145/1240624.1240795
http://dx.doi.org/10.1145/1753326.1753342
http://dx.doi.org/10.1109/ICPC.2006.14
http://dx.doi.org/10.1007/s11219-010-9104-9
http://dx.doi.org/10.1145/2998181.2998332

workspaces. In Proceedings of the 2013 ACM
international joint conference on Pervasive and
ubiquitous computing - UbiComp ’13. ACM Press, New
York, New York, USA, 63. DOI:
http://dx.doi.org/10.1145/2493432.2493476

[52] Sabine Sonnentag and Jana Kühnel. 2016. Coming back
to work in the morning: Psychological detachment and
reattachment as predictors of work engagement. Journal
of Occupational Health Psychology 21, 4 (2016),
379–390. DOI:http://dx.doi.org/10.1037/ocp0000020

[53] Diomidis Spinellis. 2010. Code Documentation. IEEE
Software 27, 4 (7 2010), 18–19. DOI:
http://dx.doi.org/10.1109/MS.2010.95

[54] Jaime Teevan, Shamsi T. Iqbal, and Curtis von Veh.
2016. Supporting Collaborative Writing with Microtasks.
In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems - CHI ’16. ACM Press,
New York, New York, USA, 2657–2668. DOI:
http://dx.doi.org/10.1145/2858036.2858108

[55] Jaime Teevan, Daniel J. Liebling, and Walter S. Lasecki.
2014. Selfsourcing personal tasks. In Proceedings of the
extended abstracts of the 32nd annual ACM conference
on Human factors in computing systems - CHI EA ’14.
ACM Press, New York, New York, USA, 2527–2532.
DOI:http://dx.doi.org/10.1145/2559206.2581181

[56] Nikolai Tillmann, Michal Moskal, Jonathan de Halleux,
and Manuel Fahndrich. 2011. TouchDevelop:
programming cloud-connected mobile devices via
touchscreen. In Proceedings of the 10th SIGPLAN
symposium on New ideas, new paradigms, and
reflections on programming and software - ONWARD

’11. ACM Press, New York, New York, USA, 49. DOI:
http://dx.doi.org/10.1145/2048237.2048245

[57] Nikolai Tillmann, Michal Moskal, Jonathan de Halleux,
Manuel Fahndrich, and Sebastian Burckhardt. 2012.
TouchDevelop: app development on mobile devices. In
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering
- FSE ’12. ACM Press, New York, New York, USA, 1.
DOI:http://dx.doi.org/10.1145/2393596.2393641

[58] J. Gregory Trafton, Erik M. Altmann, Derek P. Brock,
and Farilee E. Mintz. 2003. Preparing to resume an
interrupted task: Effects of prospective goal encoding
and retrospective rehearsal. International Journal of
Human Computer Studies 58, 5 (5 2003), 583–603. DOI:
http://dx.doi.org/10.1016/S1071-5819(03)00023-5

[59] Rajan Vaish, Keith Wyngarden, Jingshu Chen, Brandon
Cheung, and Michael S. Bernstein. 2014. Twitch
Crowdsourcing: Crowd Contributions in Short Bursts of
Time. In Proceedings of the 32nd annual ACM
conference on Human factors in computing systems -
CHI ’14. ACM Press, New York, New York, USA,
3645–3654. DOI:
http://dx.doi.org/10.1145/2556288.2556996

[60] Melissa A. Valentine, Daniela Retelny, Alexandra To,
Negar Rahmati, Tulsee Doshi, and Michael S. Bernstein.
2017. Flash Organizations: Crowdsourcing Complex

Work by Structuring Crowds As Organizations. In
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems - CHI ’17. ACM Press,
New York, New York, USA, 3523–3537. DOI:
http://dx.doi.org/10.1145/3025453.3025811

[61] R. van Solingen, E. Berghout, and F. van Latum. 1998.
Interrupts: just a minute never is. IEEE Software 15, 5
(1998), 97–103. DOI:
http://dx.doi.org/10.1109/52.714843

[62] David Watson, Lee Anna Clark, and Auke Tellegen.
1988. Development and validation of brief measures of
positive and negative affect: The PANAS scales. Journal
of Personality and Social Psychology 54, 6 (1988),
1063–1070. DOI:
http://dx.doi.org/10.1037/0022-3514.54.6.1063

[63] Alex C. Williams, Harmanpreet Kaur, Gloria Mark,
Anne Loomis Thompson, Shamsi T. Iqbal, and Jaime
Teevan. 2018. Supporting Workplace Detachment and
Reattachment with Conversational Intelligence. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems - CHI ’18. ACM Press,
New York, New York, USA, 1–13. DOI:
http://dx.doi.org/10.1145/3173574.3173662

[64] Dennis Wixon, Karen Holtzblatt, and Stephen Knox.
1990. Contextual design: an emergent view of system
design. In Proceedings of the SIGCHI conference on
Human factors in computing systems Empowering
people - CHI ’90. ACM Press, New York, New York,
USA, 329–336. DOI:
http://dx.doi.org/10.1145/97243.97304

http://dx.doi.org/10.1145/2493432.2493476
http://dx.doi.org/10.1037/ocp0000020
http://dx.doi.org/10.1109/MS.2010.95
http://dx.doi.org/10.1145/2858036.2858108
http://dx.doi.org/10.1145/2559206.2581181
http://dx.doi.org/10.1145/2048237.2048245
http://dx.doi.org/10.1145/2393596.2393641
http://dx.doi.org/10.1016/S1071-5819(03)00023-5
http://dx.doi.org/10.1145/2556288.2556996
http://dx.doi.org/10.1145/3025453.3025811
http://dx.doi.org/10.1109/52.714843
http://dx.doi.org/10.1037/0022-3514.54.6.1063
http://dx.doi.org/10.1145/3173574.3173662
http://dx.doi.org/10.1145/97243.97304

	Introduction
	Related Work
	Multi-Device Use in Information Work
	Microproductivity blackand Microtasks
	Task Resumption

	Pre-Study: Contextual Inquiry
	Contextual Inquiry Methods
	Contextual Inquiry Findings
	Understanding Mobile Work Practices
	Understanding Cross-Device Continuation
	Understanding Task Resumption

	Pre-Study: Online Survey
	Online Survey
	Online Survey Findings
	Understanding Mobile Work Practices
	Understanding Cross-Device Continuation
	Understanding Task Resumption
	Summary of Findings: Contextual Inquiry & Online Survey

	Mercury, A Mobile Programming Tool
	blackMicrotask Generation
	Exploratory Microtasks
	Grounded Microtasks
	Queuing, Sequencing, and Completing Microtasks

	System Architecture
	Data and Synchronization Model

	User Study: Methods
	Experimental Design
	Phase I: Starting the Task
	Phase II: Going Mobile with Mercury
	Phase III: Returning to the Task

	Programming Task
	Data Collection
	Pre-Study Questionnaire
	Instrumentation Data
	Post-Study Questionnaire
	Post-Study Interview

	Participants

	User Study: Findings
	Supporting Mobile Work Practices
	Exploratory and Grounded Microtasks
	When Mercury Would Be Used

	Supporting Cross-Device Continuation
	Supporting Task Resumption

	DISCUSSION
	Limitations

	Conclusion
	References

