
Improving Information Retrieval with Textual

Analysis: Bayesian Models and Beyond

by

Jaime B. Teevan

Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2001

c© Jaime B. Teevan, MMI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .

Department of Electrical Engineering and Computer Science
May 25, 2001

Certified by. .
David Karger

Professor of Computer Science
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Improving Information Retrieval with Textual Analysis:

Bayesian Models and Beyond

by

Jaime B. Teevan

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2001, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Information retrieval (IR) is a difficult problem. While many have attempted to
model text documents and improve search results by doing so, the most successful
text retrieval to date has been developed in an ad-hoc manner. One possible reason
for this is that in developing these models very little focus has been placed on the
actual properties of text. In this thesis, we discuss a principled Bayesian approach we
take to information retrieval, which we base on the standard IR probabilistic model.
Not surprisingly, we find this approach to be less successful than traditional ad-hoc
retrieval. Using data analysis to highlight the discrepancies between our model and
the actual properties of text documents, we hope to arrive at a better model for
our corpus, and thus a better information retrieval strategy. Specifically, we believe
we will find it is inaccurate to assume that whether a term occurs in a document is
independent of whether it has already occurred, and we will suggest a way to improve
upon this without adding complexity to the solution.

Thesis Supervisor: David Karger
Title: Professor of Computer Science

2

Acknowledgments

I would like to thank David Karger for his invaluable guidance throughout this pro-

cess. I have particularly appreciated his theoretical background and enthusiasm for

understanding the fundamentals of any problem. He has taught me to hack less and

think more. In addition to David, Lynn Stein and everyone else in the Haystack

group, have made the past two years stimulating and enjoyable. Tommi Jaakkola

and Leslie Kaelbling were valuable resources during this research. I would also like

to acknowledge the National Science Foundation for their financial backing. And, of

course, thank you, Alexander Hehmeyer, for your love and support. You are a part

of everything I do.

3

4

Contents

1 Introduction 15

1.1 Why is Information Retrieval Important? 15

1.2 How is Information Retrieval Done? 16

1.2.1 Ad-hoc retrieval . 16

1.2.2 Retrieval using a model . 17

1.3 Using Textual Analysis in Model Building 18

1.4 Thesis Overview . 19

2 Background 21

2.1 Basic IR Assumptions . 22

2.2 Information Retrieval Models . 25

2.2.1 Boolean retrieval . 25

2.2.2 Vector space retrieval . 27

2.2.3 Probabilistic models . 32

2.2.4 Practical considerations . 36

2.3 Data Analysis . 37

2.3.1 Evaluating results . 38

2.3.2 Evaluating assumptions . 39

2.3.3 TREC . 41

3 Multinomial Model 43

3.1 Description of Model . 44

3.1.1 Generative model . 44

5

3.1.2 Using the model for retrieval 46

3.1.3 Efficiency . 50

3.2 Finding the Term Distributions . 51

3.2.1 Example . 52

3.2.2 Problems . 54

3.2.3 Prior . 56

3.2.4 Initial distribution estimate 58

3.2.5 Efficiency . 60

3.2.6 Learning the distribution . 62

3.2.7 Setting Constants . 64

3.3 Results . 66

3.3.1 Corpus . 67

3.3.2 What we found . 67

3.3.3 Why we found what we found 73

4 Textual Analysis 75

4.1 Corpus . 76

4.2 Goal of Textual Analysis . 77

4.2.1 Finding the hidden t.p.d.f. 80

4.3 Terminology . 83

4.4 Data Not Multinomial . 85

4.4.1 Unique words . 86

4.4.2 Heavy tailed . 86

4.5 Exploring the Data . 90

4.5.1 Possible statistics that describe the hidden t.p.d.f. 90

4.5.2 Finding the hidden t.p.d.f. 96

5 Building a Better Model 105

5.1 Power Law Distribution . 106

5.1.1 Motivation . 106

5.1.2 Pre-process data to match multinomial model 109

6

5.1.3 Alter model . 110

5.2 Binary Model . 116

5.3 Results . 118

5.3.1 With an initial estimate . 119

5.3.2 With learning . 120

5.3.3 With the correct distribution 120

6 Conclusion 125

6.1 Future Work . 125

6.1.1 Analysis . 126

6.1.2 Model building . 126

6.1.3 Testing . 127

7

8

List of Figures

2-1 Graph of the conceptual document space. Recall measures the fraction

of documents that are retrieved. Precision is the fraction of retrieved

documents that are relevant. 38

3-1 Results found using the multinomial model. The relevant distribution

used is the initial estimated distribution. Results are compared with

tf.idf. 68

3-2 Results found using the multinomial model. The relevant distribution

is the initial estimated distribution with varying query weights. . . . 70

3-3 Results found using the multinomial model. The relevant distribution

is found using learning. Results are compared for different number of

iterations during the learning process. 71

3-4 Results found using the multinomial model. The relevant distribution

is found using learning, with different values for the prior weight and

query weight set. 71

3-5 Results found using the multinomial model. The relevant distribution

is found using learning, with good values for the prior weight and query

weight set. 72

3-6 Results found using the multinomial model. The relevant distribution

is the correct distribution. 74

4-1 An example t.o.p.d. for the term “granny” in our example corpus. By

looking at a term’s empirical t.o.p.d. we hope to be able to find the un-

derlying hidden parameter we assume describes the term’s occurrence. 79

9

4-2 The number of documents of length n. Document length displayed by

source, and for the corpus as a whole. 81

4-3 The number of documents within a bin. Each bin represents a docu-

ment length range. The length range of a bin grows exponentially to

keep the relative variation within a bin similar. 82

4-4 Number of unique terms in a document compared with the number

of terms in a document. Graph displays empirical values and what

is predicted given the multinomial model. For clarity, the empirical

data has been binned. Error bars on the empirical data represents the

standard deviation within each bin. 87

4-5 The empirical t.o.p.d. for terms compared with what is expected from

the multinomial model. Terms occurrence appears to be more clustered

than expected. 89

4-6 The t.o.p.d. for terms with different corpus frequencies. 97

4-7 The probability that a term will occur exactly ω times as a function of

the term’s corpus frequency. 98

4-8 Probability of a term occurring once compared with the probability of

a term occurring two times. 99

4-9 The t.o.p.d. for terms with different conditional averages. There does

not seem to be a very consistent pattern for term occurrence across

different conditional averages. 100

4-10 The t.o.p.d. given that the term has occurred for terms with different

document frequencies. The variation is small across different document

frequencies, implying that document frequency is not a good measure

of the probability a term will occur given that the term has occurred. 101

4-11 The t.o.p.d. given the term has occurred for terms with different con-

ditional averages. Binning by conditional average produces much more

variation than binning by document frequency. 102

4-12 Comparison of standard deviation of the t.o.p.d. for terms binned by

document frequency and conditional average. 104

10

5-1 The empirical t.o.p.d. compared with what is expected from multino-

mial and power law distributions. Even when viewed closely (graphs c

and d) the empirical t.o.p.d. overlaps significantly with the t.p.d.f. for

a power law distribution. 108

5-2 The empirical t.o.p.d. for terms in Data Set 1 and 2 shown on a log-log

scale, with different values for α. A straight line implies a power law

distribution. 109

5-3 The average value of log(1+ω) for a term when it appears in documents

of two different log lengths. Although the relationship is reasonably

close to linear, it is not actually linear. 117

5-4 Results found using the new models. The relevant distribution used is

the initial estimated distribution. 119

5-5 Results found using the new models. The relevant distribution is found

with learning. 121

5-6 Results found using the new models. The relevant distribution is found

by learning from the correct distribution. 122

5-7 Learning from the correct distribution. 123

11

12

List of Tables

3.1 The underlying probability that a term will occur in relevant and ir-

relevant documents our “Granny Smith apples” corpus (θ). Given we

know these values, finding the probability a document is relevant is

straight forward. Estimating these values is fundamental to retrieving

a document using the multinomial model. 49

3.2 The empirical probability that a term will occur in relevant and irrel-

evant documents in our “Granny Smith apples” corpus. While using

the empirical probability of term occurrence is one way to estimate the

underlying probabilities, it requires large amounts of labelled data to

do suitably, and has several other problems as well. 53

4.1 Description of the two sub-corpora we will analyze. Each sub-corpus

contains documents of the same length. 83

4.2 Correlation coefficients for various different statistics available during

our textual analysis. When the correlation coefficient is close to one the

statistics are highly correlated. A correlation coefficient that is close

to negative one means that the statistics are negatively correlated, and

when it is close to 0 the statistics are not correlated at all. 95

13

14

Chapter 1

Introduction

In this thesis we will talk about the work we have done using textual analysis to

improve information retrieval (IR). The purpose of this section is to motivate our work

by first talking about why information retrieval is important and why the approach

we have taken to improving IR is a good one. We will then discuss several reasons that

textual models should be used for information retrieval, and motivate using textual

analysis in the process of building a model. Finally, we will give a quick overview of

exactly what we are going to discuss in this thesis.

1.1 Why is Information Retrieval Important?

Text retrieval is a difficult problem that has become both more difficult and more

important in recent years. This is because of the increased amount of electronic

information available and the greater demand for text search as a result of the World

Wide Web. People are surrounded with large quantities of information, but unable to

use that information effectively because of its overabundance. For example, the Web

without a search engine would be a much less useful tool. By improving information

retrieval, we are improving people’s access to the information available to them.

15

1.2 How is Information Retrieval Done?

Since we will be discussing information retrieval, it is necessary first to understand

something about how the retrieval process works. As pointed out by Robertson and

Walker [36], there are two main approaches that we can take to build a system that

retrieves documents for a given query. One is in an ad-hoc manner, and the other is a

more principled, model-based manner. This is, of course, an over-generalization, but

we will attempt to elucidate IR by discussing these two approaches separately. Let us

first discuss the ad-hoc retrieval methods, as these were the first to be developed and

are the most common retrieval methods used in practice. We will then talk about why

one would use a model for information retrieval instead. This motivation is important

since we will use a model in our investigations.

Keep in mind that while we discuss the two approaches separately, most ap-

proaches to IR fall somewhere between the two extremes. Even the most highly

principled models have some elements that are chosen in an ad-hoc fashion because

they “seem right”. While retrieval may initially be developed in an ad-hoc manner,

these systems can often be motivated by models as well [6]. This allows us to reap

the benefits of a model from the ad-hoc methods.

1.2.1 Ad-hoc retrieval

What does it mean to retrieve documents in an ad-hoc fashion? It means that we do

not approach the problem of IR in a principled manner, but rather continue to add

new heuristics to whatever retrieval method we employ in hopes of improving our

result quality. For example, let us say that we have a query and a set of documents.

We could retrieve documents by returning those documents that contain the query

terms. To improve upon this in an ad-hoc manner, we could decide to factor the

number of times that a term appears in a document as well. Probably most of the

searching that you do is done by an ad-hoc retrieval method, as most Internet search

engines use these methods. The best example of such a system is Salton’s early

vector space model [40]. Note that while it may be difficult to understand what is

16

happening with an ad-hoc retrieval system, they can be based on textual analysis

and a good understanding of the written language. Examples of this include work

done by Sparck Jones [19] when she suggests using the inverse document frequency

for term weighting, as well as more recent work by Warren Greiff [12].

There are many benefits of ad-hoc information retrieval, and these benefits are

reflected in the fact that the most popular retrieval methods are all ad-hoc. An ad-

hoc retrieval system is quick to build. You come up with a new way you think can

improve retrieval, and you add it. Many of the ad-hoc retrieval methods are also very

fast, needing only to look at the occurrence of query terms in the documents they

appear at query time. And, despite the fact that you might question the performance

of your favorite Internet search engine sometimes, the search result quality is actually

quite high as well.

However, there are also many draw backs of such a retrieval system. Every change

that is made to an ad-hoc retrieval system effects the retrieval in unpredictable ways.

Additionally, it is very difficult to understand exactly what is happening in these

systems, and therefore understand what should be done to improve them. For this

reason people have built models for information retrieval.

1.2.2 Retrieval using a model

An architect who is designing a house cannot test her different designs in the real

world. The real world is just too complex and expensive for her to operate in. Instead

she builds a model of the house she is creating. This model represents the important

aspects of reality, and allows her to understand her design and eventually build the

house. Like the architect, we will build a model. Rather than modeling physical

objects, though, we will build a model of information, modeling our corpus, query,

relevant and irrelevant documents. This will allow us to work with something we can

understand and control. Our model, if it is built correctly, will capture the important

aspects of a query and the documents needed for retrieval.

There are many benefits to working with a model. First, the assumptions inherent

in the model are explicit. For the architect, it means that it is clear that the cardboard

17

walls of her model represent wood and that the scale of her model is 1:50. For us as

IR researchers, the assumptions will relate to the properties of the text. For example,

we might assume that word order is not important, or that whether or not a term

occurs in a document is independent of all the other terms in that document. Many

of these same assumptions are implicit in the ad-hoc retrieval methods. However,

since here these assumptions are explicit, we can better understand how closely our

retrieval method matches reality, and clearly understand areas for improvement.

In addition, it is nice to work with a model because the trade-offs of making

changes are clear. When the architect builds a wing on her model house, she can

clearly see that she is blocking windows, and see how much new floor space she is

adding. When, in IR, we change an assumption, such as deciding that whether a term

occurs in a document is actually dependent on what other terms are in the document,

we can clearly understand what sort of complexity that will add to our model, and

predict the effects of the changes on performance.

Why, then, are models not used in practice? It is because currently there don’t

exist models that give as high quality search results as the standard ad-hoc methods

at the fast speeds that are required. But through the process of working with a model,

we should be able to develop a better system for all of the reasons described above

that models are good.

1.3 Using Textual Analysis in Model Building

We will be working to improve model based information retrieval in a principled

manner. We will discuss exactly how models are built in greater detail in Chapter 2.

Here let us discuss briefly the process by which models are often build in IR. To build

a model, the IR researcher first makes some simplifying assumptions about textual

information. Then, using those assumptions, he builds a model. Once the model is

built, he uses it to retrieve and rank the relevant documents.

All too often it is only at this last stage, the retrieval point, that an IR researcher

interacts with textual data. Using the results from his model, he runs some tests

18

that allow him to compare his model with other retrieval methods, and determines

how good the results his model produces are. He then goes back to the simplifying

assumptions his model makes and modifies his assumptions. From here he develops

a new model, uses it for retrieval, tests is, and compares it. We will discuss the lack

of interaction an IR researcher has with the text further in Section 2.3.

Instead, what we will do in order to improve upon model based retrieval, is to go

directly to the text at the point where we are making the assumptions. This way we

can know exactly what is happening at the assumption level, and by grounding the

assumptions in reality, build a model with a strong foundation. We all have so much

experience with language and text documents, given that we have been speaking and

reading almost our whole lives, that we assume that we know what’s going on in

written documents. While we may have a good idea of whether an assumption is

true or not, that does not mean that we know which assumptions are the least true,

and therefore the most worth investigating. We want to break away from using our

preconceived beliefs and understand what is actually present in the data in order to

improve retrieval.

1.4 Thesis Overview

In this thesis, we will first explain in greater detail several different methods of infor-

mation retrieval, as well as give some insight into what sort of data analysis has been

done so far, in information retrieval and in related fields. We will then discuss the

basic model that we use as our baseline, the multinomial model. The multinomial

model is a probabilistic model for document generation that assumes that each term

in a document is selected independently from a single probability distribution. We

look at how this model performs, as well as what sort of corpus statistics we would

expect from this model. We then go to the text, and look at how closely the text

matches what we would expect from this model.

Once we have a better understanding of the text, we update our assumptions,

and build a new model. One of the things that we find through our textual analysis

19

is that term appearance tends to be more clustered than we would expect with the

multinomial model. That is, once a term is used in a document, it is more likely to

appear again. We change our model to expect terms to appear in groups, and find

that we can get better performance by doing this.

20

Chapter 2

Background

Thinking about the problem of information retrieval, it may seem amazing that a

computer can know about and understand an extremely large set of documents writ-

ten in natural language, at least enough to be able to answer a person’s queries over

that set. There are all sorts of questions that arise: When a person issues a query,

does the IR system have to fetch and read through each of the documents it knows

about to find results? Does it have to have an understanding of what the query is

asking and what the documents mean?

Since in this thesis we will discuss how the work we have done has improved upon

current information retrieval techniques, in this section we will first discuss how these

questions are currently answered and develop a kit of tools that we can use to answer

other similar questions in IR. We will look at some of the most common methods of

information retrieval by following a single query, a query for “Granny Smith apples”.

There are a number of good resources that summarize information retrieval models

[9, 43, 7] if you are interested in delving further into the subject.

The set of documents, also called a corpus, that we start out with is very simple:

1. Apples are the most widely cultivated of all tree fruit.

2. An apple a day keeps the doctor away. Eat lots of apples.

3. Granny Smith apples are green and Washington apples are red.

With this simple corpus, it seems reasonable that our search for “Granny Smith ap-

21

ples” should return Document 3 as the most relevant document. After all, Document

3 is the only document that contains any content about Granny Smith apples. To

understand how we can conduct a search that ranks this document first, let’s discuss

some basic information retrieval models. First we will talk about the basic assump-

tions about the corpus that we apply to all of the models that we will discuss. Then

we will describe these models, showing how they perform for this query, and finally,

we will discuss how these models relate to actual textual data.

2.1 Basic IR Assumptions

First, let us look a little bit at the assumptions common to all of the information

retrieval models we will be discussing here. Any information retrieval model assumes

that there exist some features that belong to each document in a document set, and

that these features are sufficient to determine if a document is relevant or irrelevant.

While the features of a document may include its length, title, author, or any other

additional information, we will look specifically at the subset of document features

that we will call terms. We hope this smaller feature set will be sufficient to determine

relevance.

Since we are dealing with text, a term can be defined as a word, a semantic mean-

ing, a pairs of words, a phrase, or even an entire sentence. In our examples, and in the

testing we do, we assume that a term is word, but it is important to remember that

this is just an additional assumption we make. We make this assumption because we

want our terms to appear often enough throughout the corpus to tell us something

meaningful about their distribution. In doing retrieval, we will be drawing gener-

alizations about documents from these terms. Without enough data to draw good

generalizations, we will over fit our model to the data. Since even the occurrence of

words throughout a corpus tends to be sparse, often with a typical term occurring in

just 0.001% of the documents, just imagine how sparse the occurrence of something

more complex like sentences is.

In information retrieval, we hope these terms are sufficient to determine if a doc-

22

ument is relevant or not. Only the presence or absence of a term in a document

matters, and not the sentences, word order, or any other structure of the document.

While not all IR systems make these assumptions, each system we discuss will.

With the assumption that everything in a document is unimportant except the

presence or absence of a term, and with the assumption that each term is a word,

we can view the documents in our corpus as what is called in information retrieval a

“bag of words”. Our “Granny Smith” corpus as a bag of words looks like this:

1. all Apples are cultivated fruit most of the tree widely

2. a An apple apples away day doctor Eat keeps lots of the

3. and apples apples are are Granny green red Smith Washington

This processing clearly loses some information about the content of each docu-

ments. For example, the document Granny Smith apples are red and Washington apples are

green. would look just like Document 3 (Granny Smith apples are green and Washington

apples are red.), even though the documents are different. Things get even more con-

fusing if we consider a document such My grandpa is a smith and my granny fixes Apple

computers. Nothing that treats a document as a simple bag of words will have any

hope of distinguishing the “Apple” in this document from the fruit “apple” in the

other documents. Something like this would require a more complicated model, such

as the semantic networks discussed by Fuhr [9], or a natural language system such as

START [21].

As a side note, you should notice that while the proposed document Granny Smith

apples are red and Washington apples are green. may be as informative about Granny

Smith apples as Document 3 is, it is, in fact, wrong. That it is incorrect highlights

yet another problem with information retrieval. There is a lot of information available

that just isn’t correct, and it would take a very sophisticated information retrieval

system to understand the difference.

Given that we are working with bag of word documents, however, there are a

number of trick that we could use to make the collection more useful. One is the

removal of stop words. Stop words are common words whose presence provides no

23

new information about a document. Because they appear so often in every document

when they appear in a particular document it is not meaningful. Stop words include

words like “the”, “and”, and “a”. While removing stop words is a generally useful

practice, it also runs the risk of removing possibly meaningful words. For example, try

searching for “The Who” on Google. You get no results, because they have removed

“the” and “who” as stop words. Without stop words, our corpus looks like this:

1. all Apples cultivated fruit most tree widely

2. apple apples away day doctor Eat keeps lots

3. apples apples Granny green red Smith Washington

Another way to make the terms in a document more useful is to try to merge

terms together that are similar in meaning, but contain slight differences that cause

them to be treated as separate terms. For example, the term “Apples” in Document 1

seems like it should match the “apple” in Document 2. We can arrive at this matching

through two steps. First, we remove the case from the terms. Second, we save only

the stem of the word. This means removing endings such as “-ing”, and “-ed”, and

“-s”, and sometimes more complicated changes, like mapping “ate” to “eat”. We

could even merge terms in a more complex manner, mapping words with the same

semantic meaning. For example, the term “cultivate” and the term “farm” could be

merged. Porter provides a common algorithm used for stemming [33].

Again, as in the case of stop words, stemming is a simplification that, while it often

helps, can also be a problem. It could cause us to confuse two terms with different

meanings. You wouldn’t want your search for “number” to retrieve documents on

“numbness” because the two words stem to the same thing. Church discusses some

of these trade-offs in his paper [5]. With stemming and case removal, we now have a

corpus that looks like this:

1. all apple cultivate fruit most tree wide

2. apple apple away day doctor eat keep lot

3. apple apple granny green red smith washington

24

Note that when performing retrieval, we will perform the same preprocessing to

our query “Granny Smith apples”. As a case-less, stop-word-less, stemmed bag of

words, the query becomes “apple granny smith”. Now that we understand our corpus

and our query, processed in a manner typical of all retrieval systems, we will look at

what different models for retrieval do with them.

2.2 Information Retrieval Models

Here we will discuss the three most common types of information retrieval, Boolean

retrieval, vector space retrieval, and retrieval using probabilistic models. The view-

point of each model is fairly obvious from the model’s name. A Boolean model views

each document in the corpus as a Boolean statement, so that the problem of resolving

a query becomes a problem of finding which documents make the query true. A vec-

tor space model views documents and queries as vectors in Euclidean space, reducing

search to finding the closest documents to a query. And probabilistic models model

each document as having been created by sampling from a probability distribution.

Given that we can describe the probability of certain features occurring in a doc-

ument, documents can be retrieved by looking at the probability of relevance, the

probability a document generated the query, or by using some other measure.

We will describe these models in some detail, continuing with our “Granny Smith

apples” example. Keep in mind that each “model” we discuss here is actually a class

of models that encompasses much variation. We will also briefly discuss some of the

real world implications of using of these different models. Fuhr [9] discusses each of

these models in greater detail.

2.2.1 Boolean retrieval

As we mentioned earlier, Boolean information retrieval takes a Boolean view of the

data. A document is seen as a logical statement. The components of a document

are the presence and absence of a term. Each term in the corpus is represented by

a boolean variable. Let us call the ith term in the corpus ti. A document looks

25

like this: t1 ∧ t2 ∧ · · · ∧ tn. Note that a closed world is assumed. This means that

terms not occurring within a document are assumed to be negated. So if term 2 does

not appear in a document, but all other terms do, it would actually look like this:

t1 ∧ ¬t2 ∧ · · · ∧ tn. From a Boolean perspective, our corpus looks like this:

1. all ∧ apple ∧¬away ∧ cultivate ∧¬day ∧¬doctor ∧¬eat ∧ fruit ∧¬granny

∧¬green ∧¬keep ∧¬lot ∧ most ∧¬red ∧¬smith ∧ tree ∧¬washington ∧ wide

2. ¬all ∧ apple ∧ away ∧¬cultivate ∧ day ∧ doctor ∧ eat ∧¬fruit ∧¬granny

∧¬green ∧ keep ∧ lot ∧¬most ∧¬red ∧¬smith ∧¬tree ∧¬washington ∧¬wide

3. ¬all ∧ apple ∧¬away ∧¬cultivate ∧¬day ∧¬doctor ∧¬eat ∧¬fruit ∧ granny

∧ green ∧¬keep ∧¬lot ∧¬most ∧ red ∧ smith ∧¬tree ∧ washington ∧¬wide

Be aware that this is a slight abuse of notation. The word isn’t actually a truth value

like we are using it to represent. Note also that the number of occurrences of a term

is not important, since t1 ∧ t1 → t1.

When retrieving, the query is treated as a boolean statement consisting of the

terms it contains. The goal is to find the set of documents that could be true given

the query. Only Document 3 would be consistent with the query (apple ∧ granny ∧
smith).

You should note several things about this model. Boolean retrieval is very powerful

for a user who knows how to specify exactly what they want. For example, we could

issue a very complicated query: ((granny ∧ smith ∧ apple) ∨ (apple ∧ tree)) ∧¬washington.

In this case we would get Document 1 as a result, but not Document 3.

Formulating such complex queries can be difficult for users. We know that the

standard Web user of Internet search engines typically uses very short and simple

queries. She tends not to put the effort into modifying her query in order to obtain

better results, and would probably never formulate complicated Boolean queries [41].

Another problem with Boolean retrieval is that it always yields a set of documents

as a result, without any further ranking. A document either satisfies the query, or it

doesn’t. If the result set is very large, presenting the relevant documents to the user

could pose a problem.

26

2.2.2 Vector space retrieval

The vector space model was originally introduced by Salton [39, 40], and also devel-

oped by Sparck Jones [19] and others. It is one of the most common forms of retrieval

used in practice [25]. Vector space models represent a broad class of models that view

text documents and queries as term vectors. Once a document is represented as a

term vector, the similarity of that document to a query can be represented as a func-

tion of Euclidean distance of the document from the query. This class of models is

popular because it performs well, and the results are computationally efficient.

To represent a document or a query as a vector, we create a vector that has an

element for each term in the corpus. As you can surely imagine, these document

and query vectors can be very large, because they have to have the dimension equal

to the number of unique terms in our corpus. This number can be huge in a real

corpus, and you can see that it is even fairly large (18) given our small example

corpus. Each coordinate in the vector represents information corresponding to the

term’s occurrence in the document or query the vector represents. The entire corpus

can be represented as a matrix, where each row is a document vector.

The value representing a term in a document vector can take on any value we define

it to. For example, it could be binary. This would mean that it simply represents the

presence or absence of the term in the document. It could also be more complex. We

will discuss complex term representations later in this section. For now, let us take

the simple binary case where each term is 0 or 1, depending on whether it appears in

the document or not. 1 will indicate the presence of the term in the document, and

0 will represent that the term is not present. Under these conditions, our corpus and

query look like this:

27

D =




al
l

ap
pl
e

aw
ay

cu
lt
iv
at

e
da

y
do

ct
or

ea
t

fr
ui
t

gr
an

ny
gr

ee
n

ke
ep

lo
t

m
os

t
re

d
sm

it
h

tr
ee

w
as

h
w
id
e

1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1

0 1 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0




q =
[
0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

]

To find the closest document to the query, we will chose the document that has

the highest dot product with the query. If the document vectors have the same

magnitude, the document with the highest dot product with the query will be the

document with the smallest angle between it and the query. In a binary model, if

two documents have the same number of unique terms, the document vectors for

those two documents have the same magnitude. This was more or less true of the

early corpora that IR systems were tested with [18]. Therefore the dot product was a

good measure of closeness during the development of early vector space models. For

more complex coprora such as the TREC corpus we will discuss in Section 2.3.3, the

assumption that document vectors have the same magnitude no longer holds. For this

reason there has been considerable work with document length normalization [4, 18].

In our example, we will not worry about vector magnitude. The dot product of

our document matrix with the query results in this:

D · q′ =



1

1

3




Note that this scheme, unlike Boolean retrieval, actually produces a ranking. Doc-

ument 3 is ranked first. Document 1 and Document 2 tie for second. However, like

Boolean retrieval, this version of the vector space model does not account for term

28

frequency. This does not mean, however, that the vector space model cannot account

for term frequency. It can, in fact, incorporate what ever information about the term

and its presence in a document that we chose it to, merely by modifying the value at

the appropriate place in the vector.

Let us say that we get a new document in our corpus: Granny Smith apples are green

and Granny Smith apples are wide. The document vector for this document looks like:

d4 =
[
0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1

]

Since d4.q′ = 3 this new document ties for most relevant with Document 3. But you
could argue that this document is more informative than Document 3 about Granny

Smith apples, evidenced in part by the greater number of times that it says “Granny

Smith apples”. It does, after all, provide two facts about the apples rather than just

one. It would be nice if our search results reflected this. One way to do this would be,

instead of having our coordinates be binary values, they could be the term frequency

(TF(ti)) of a term within a document. Modified in this way, and taking into account

term frequency, our vector space model will compute the following scores for each

document:




ap
pl
e

gr
an

ny
sm

it
h

1 0 0

2 0 0

2 1 1

2 2 2




·
[
1 1 1

]
′ =




1

1

3

6




Because the terms that don’t appear in the query have a value of 0 in the query

vector, only terms that actually appear in the query factor into the dot product. For

this reason, to make notation simpler, we ignored non-query terms in our document

representation. We have only shown the documents’ and query’s values for “granny”,

29

“smith”, and “apple”.

You can see that for our example, incorporating term frequency into our model

works well. But imagine we get another document that says a lot about apples,

but nothing about Granny Smith apples: Apples can be used to make apple cider, apple

juice, apple sauce, apple pie and apple strüdel. If we were to include this new document

(represented as the bottom row of the new document matrix), we would get results

that look like:




1 0 0

2 0 0

2 1 1

2 2 2

6 0 0



·
[
1 1 1

]
′ =




1

1

3

6

6




The new document, Document 5, actually receives the same score that Document

4 does, and a higher score than Document 3. But we could argue that it is actually

less relevant since it doesn’t contain any content relating to Granny Smith apples

specifically. Many common vector space models account for this problem by factoring

in a term’s rarity.

In our corpus, “apple” is a very common word. Because it appears in every

document, it is almost like a stop word in our corpus. Its presence doesn’t mean very

much. Therefore it is not likely to be a very important term in our query. On the

other hand, “Granny Smith” doesn’t appear quite as often. For this reason, we might

say that it is a more informative part of our query. Using this rationale, we would like

to boot the value of informative terms. To do this, we use the inverse of the number

of different documents a term appears in (inverse document frequency, or IDF(ti)) as

a measure of rarity.

The following equation shows the document matrix with the term rarity taken

into account. Each entry represents the term’s frequency within a document divided

30

by the term’s inverse document frequency. For example, since IDF(granny) = 2, the

value for the term “granny” in Document 3, where the term occurs only once, is 1
2
. On

the other hand, even though the term “apple” occurs twice in the same document,

its coordinate takes on a lower value (2
5
). This is because “apple” has an inverse

document frequency of 5.




1
5
0 0

2
5
0 0

2
5

1
2

1
2

2
5

2
2

2
2

6
5
0 0




[
1 1 1

]
′ =




1
5

2
5

12
5

22
5

11
5




Now we get the results we wanted, with Document 4 being judged most relevant, and

Document 3 the next.

As you can see, the general vector space framework allows for a lot of variation.

The coordinates in the vector can be represented as many different variations on what

we have discussed here, and closeness measures can be effected in many different ways

as well, depending on how we normalize for document length. While the initial vector

space models were developed empirically, as we have done here, it should be noted

that there exist probabilistic models that in their simple forms can be reduced down

to a vector space model, and can be used to motivate vector space retrieval [18].

The most common vector space model is very similar to the method described

above. Because it takes into account term frequency and the inverse document fre-

quency of a term, it is often called tf.idf. We will be using tf.idf for comparison with

our retrieval systems. The specific variation we will use is mentioned by McKeown

et. al. [27]. We will set the ith coordinate of the vector for document j to be:

TF(ti) · log (number of documents · IDF(ti))

Recall from before that TF(ti) is simply the number of times that a term occurs in a

31

document, and IDF(ti) is the term’s inverse document frequency.

2.2.3 Probabilistic models

A number of principled models have been developed to improve upon the ad-hoc, yet

successful, vector space method described above. The probabilistic retrieval model

is one of the most common frameworks for building principled information retrieval

models. vanRijsbergen gives a good introduction to the basics of the probabilistic

model in his book [43]. There are a number of other treatments of probabilistic

models if you are interested in pursuing the topic further [10, 24]. In this section we

will describe the basic probabilistic framework.

Probabilistic models assume the existence of a query, and then model the gen-

eration of documents that are relevant and irrelevant to that query. Our discussion

here will all be with respect to a given query. A probabilistic model further assumes

that there exists a feature distribution from which each relevant document is created

and a feature distribution from which each irrelevant document is created. Note that

these feature distributions may be simple, such as assigning each term a probability

of occurring in a document, or complex, including the selection between many other

feature distributions. Documents are assumed to have been generated by sampling

from these distributions.

Given a probabilistic generative model for the corpus, a probabilistic model must

retrieve and rank documents. There are several ways to do it. Here we will highlight

two. When we rank documents by the probability that a document would generate

the query, it is called a language model. However, traditionally, when we refer to

probabilistic models, we mean we will be ranking by the probability that a document

is relevant. We will discuss both methods, but will focus on the later since it is what

we use in our models. In our discussion, let us use rj to represent whether or not

document j is relevant (rj = 1 if document j is relevant and rj = 0 if it is irrelevant),

and dj represent document j.

32

Language models

A language model is interested in ranking documents by the probability that the

query could have been generated if a particular document were relevant (Pr(q|dj))

[1, 32]. Language modeling is not only done specifically for the purpose of information

retrieval, and Rosenfeld discusses language modeling in general further [37]. Ng takes

a different approach to ranking, looking at the change in likelihood of a document

from before the query is seen to after [28]. This approach reduces to a ranking that

is very similar to that of a language model.

Probability ranking principle

On the other hand, we will be interested by ranking by the probability that a docu-

ment is relevant, Pr(rj |dj). It can be shown that if the cost of incorrect retrieval is

the same across documents, ranking documents in descending probability of relevance

reduces cost, and is therefore optimal [10]. This idea is so important to probabilistic

retrieval models that the concept of ranking by the probability that a document is

relevant is given a name, the probability ranking principle [35].

Given the probability ranking principle, if we know the probability for a particular

query that a document is relevant (Pr(rj|dj)), then we can produce results. For

example, if the probability that Document 3 is relevant is 0.67, while the probability

that Document 1 is relevant is 0.12, then we can rank the two documents using those

probabilities, placing 3 ahead of 1.

We don’t know this value. But, given a generative model and the appropriate

term distributions, we can find Pr(dj|rj). If we know the relevant and irrelevant

distributions that the documents are created from, as well as the sampling method

used to generate the documents, it is straight forward to find the probability that a

document was generated from each distribution. Unfortunately, what we’re interested

in is not the probability that a document was created from the relevant or irrelevant

distributions, but rather, given a document, whether that document is relevant or

not. Fortunately, Bayes rule transforms this problem from something we don’t know

33

into something we do.

Pr(rj |dj) =
Pr(dj|rj) Pr(rj)

Pr(dj)
(2.1)

Using a probabilistic model for information retrieval thus becomes a matter of

understanding the generative model for a document and accurately estimating the

values for the distributions from which documents are generated.

Distribution of terms

We have seen how, given a probabilistic model, understanding the distribution of

terms from which documents are generated is fundamental. We need some idea of

what the distribution looks like in order to find the probability that a document was

generated from the distribution.

There are a number of ways that terms could be distributed. Early probabilistic

models were binary, and assumed terms either appeared in a document or they didn’t.

On the other hand, the 2-Poisson model proposed by Harter [16] and built upon by

many [18, 36], assumes that terms follow a Poisson distribution. Further, 2-Poisson

model assumes that only certain terms from each document, the terms the 2-Poisson

model declares to be “elite”, or particularly indicative of the document’s subject are

important. Later in this thesis we will discuss in more detail using a multinomial

distribution as the term distribution. The multinomial distribution has also been

explored by Kalt [20].

Finding the distribution

Once the model is specified, and we know what sort of distribution we are looking

for, it becomes essential to make good estimates about the parameters of the relevant

and irrelevant term distributions. There are many different paths that have been

explored here as well. The distribution parameters can be estimated directly from

the available information or learned, but neither can be done if we don’t have some

information, such as documents labeled relevant and irrelevant, with which to begin.

34

Depending on the system, the estimation process from the labeled can take a

classical approach, or a Bayesian approach. A classical approach does not try to

incorporate any prior knowledge that the system may have about the distributions,

but rather assumes that all information is directly available in the labeled data. A

Bayesian approach places priors on the distributions that are then updated with

whatever new information that becomes available. Keim, et al. [22] provides an

example of such a Bayesian approach. Because we will be taking this approach, we

discuss the use of priors in greater detail in Section 3.2.3.

Here we will talk about how information about the term distribution parameters

is acquired and used. Once a probabilistic retrieval system collects what it believes to

be the information necessary for estimating the relevant and irrelevant distributions,

as well as any prior knowledge it might have available to it, the distributions can

either be estimated directly from that information, or learned using some sort of

machine learning technique. We discuss how to gather labeled data as well as how

machine learning is done to try to improve the distribution estimates.

Gathering labeled data Some implementations of probabilistic models assume

that there already exist sufficient labeled documents to estimate the relevant and

irrelevant term distributions [20]. Others realize there is a need to collect that infor-

mation in some way. One way that the system might collect labeled information is

called relevance feedback. The user is first presented with a set of results from some

other retrieval system (for example, an ad-hoc retrieval system), and the user is then

asked to label the documents as relevant or irrelevant. These documents can then be

used to estimate the term distributions [43]. Another source of labeled information

is the query that is issued, as well as any previous queries the user has run [22].

Learning the distribution In addition to using relevance judgments that are

hand labeled by the user or some other process, the system could use its own relevance

judgments to feedback into its results in order to find what it thinks are the most likely

term distributions. One way to do this feedback is called Expectation Maximization

35

(EM). EM is a simple iterative hill climbing method commonly used for machine

learning. EM finds a local maximum in the search space it is given. In the case

of estimating term distributions, EM can be used to find the maximum likelihood

distributions that are most likely to have created the available information.

For example, Nigam, et al., uses expectation maximization to estimate the most

likely parameters for their probabilistic text classification model and use the estimates

classify text documents [30, 29]. While they still rely on having some labeled training

data, they are able to use the unlabeled data as well in a feedback loop.

In this thesis, we use EM to find the most likely term distribution for our retrieval

model, and will discuss the details of how we do this further in Section 3.2.6. There

are many good discussions that can be found on learning [17] and on EM specifically

[3, 34], including several that deal specifically with Bayesian parameter estimation

[31, 8]. For this reason, we will only go into the details of it as necessary when

discussing the models that we use for retrieval.

2.2.4 Practical considerations

Despite the fact that there are many models for information retrieval, some of which

we have just described, the most common form of IR in practice is the fairly simple

vector space method described in Section 2.2.2. It is popular because it gives good

performance and it can be optimized to run very fast. As we saw with the vector

space model, only the query terms matter in retrieval. This being the case, we can

build what is called a reverse index, which maps terms to documents in which they

occur. At retrieval time we only need to look at the documents that contain the

query terms. These we can quickly retrieve from the reverse index and perform the

necessary dot product.

The results for some probabilistic models can similarly be computed very quickly,

but most are fairly complex. The performance of a model is a function of how many

parameters are required to be estimated during retrieval, and what the estimation

methods used are. One of our goals in working with the multinomial model that we

will discuss in Chapter 3, as well as in our development of new probabilistic models

36

in Chapter 5 is to keep the models simple. This allows for result computation that

performs in a manner comparable to a vector space model.

2.3 Data Analysis

We have just looked at various contrived examples, and tried to improve upon each

model we discussed by coming up with new examples that brake our current model.

In doing this, we demonstrated how our intimate interaction with natural language

gives us the feeling that we can look at and improve IR models without actually

understanding how well the models fit actual, real life data.

Unfortunately, this intuitive often how models for information retrieval are built.

A researcher says that she has feeling that a certain assumption must be wrong, and

then works to improve upon that. The intuitive feeling that an assumption is very

broken may stem from goals expressed in previous work in information retrieval or

statistical natural language processing, or it may just be a plain belief that something

clearly is wrong.

Examples of models that are developed this way are easy to find [33, 23, 13,

32]. For example, Ponte and Croft, in discussing their language model approach to

information retrieval, motivate what they do based on feelings: “[M]any of the current

of the current models make assumptions about the data that we feel are unwarranted

[32].” In each of the cases pointed out above, the only real interaction that the research

has with the data is through the evaluation process. In contrast, we go directly to

the data and improve upon the current probabilistic models by understanding which

assumptions are most inaccurate, and therefore need to be relaxed.

Understanding the corpus from which we retrieve is essential in building a model

for information retrieval. In this section we discuss issues involving the corpus. First

we will discuss the most common interaction an IR researcher has with the data,

which is result evaluation. Not all information retrieval has been developed solely by

interacting with the data at retrieval time, however. We will discuss some work that

has been done involving exploratory data analysis to improve retrieval, as well as touch

37

upon exploratory data analysis outside of the field of IR. Finally, we will introduce

the TREC corpus, a collection of documents available for testing and evaluation.

2.3.1 Evaluating results

Exactly what to evaluate in an information retrieval system and how to evaluate it

can be contentious issues [42]. There are many different aspects of a retrieval system,

and comparing all facets can be hard. However, we will use the reasonably standard

and well established measures of precision and recall to evaluate our model. Further

discussion of IR evaluation methods can be found in VanRijbsbergen’s book [43].

Imagine there is a large document set that comprise our corpus. Some small subset

of these documents are relevant, and some other small subset of the documents that

have been retrieved by the system we are testing. It is our hope that these two subsets

overlap. If the retrieval is perfect, they’re the same. This imagined document space

can be seen in Figure 2-1. A ∪ B is the set of retrieved documents, while C ∪ B is

the set of relevant documents. B represents the intersection of the two sets.

Figure 2-1: Graph of the conceptual document space. Recall measures the fraction of
documents that are retrieved. Precision is the fraction of retrieved documents that
are relevant.

38

Recall is defined as the fraction of relevant documents that are retrieved, or |B|
|B∪C| .

An example of a person who cares about high recall is an attorney doing a search for

relevant cases to a case that she is handling. She wants to know about every relevant

case that exists, so she wants high recall. One way to get perfect recall is to return

every document in the corpus. If high recall were all that were required for good

retrieval, our job would be easy.

However, we also care about precision. Precision is the portion of the retrieved

documents that are actually relevant, or |B|
|A∪B| . A person performing a Web search

is an example of a person who cares about high precision. When he searches for

“apples”, rather than wanting to see all of the hundreds of thousands of Web pages

on apples, he just cares that the top ten results retrieved are about apples. A good

way to get perfect precision is to not return any documents at all.

As you can imagine, these two metrics are at odds with each other. You often

get higher recall at the expense of precision, and vice versa. Retrieval effectiveness

is measured as the ability of the system to retrieve relevant documents while holding

back irrelevant ones. Because of this, it is standard in the IR community to graph

both metrics in what is called a precision-recall curve. We are able to look at different

precision and recall values easily when results are provided in a ranked list. Working

our way down the list, we can look at the precision and recall values at for various

document set sizes. When we only include documents from the top of the list, we

should have high precision and low recall. As we include more documents the recall

will go up while the precision goes down. Our goal when precision and recall are

plotted against each other is to have the line move up and to the right, obtaining

both the highest possible precision and the highest possible recall.

2.3.2 Evaluating assumptions

As we have mentioned before, we all have a lot of experience with text documents.

We read the newspaper. We read books, journals and magazines. We know that when

we write a document, we’re not drawing words at random from some prior probability

distribution. Because of this knowledge, it is often tempting when trying to improve

39

upon a text retrieval model to make assumptions about how the data diverges from

the model without actually understanding how it diverges. For example, we know

that the word order in a document matters, so we might try to fix the model by

removing the bag of words assumption. But this assumption may not be the most

significant problem with our retrieval model. Without data analysis we cannot really

know. As we mentioned earlier, this intuitive manner for improving IR models is how

changes are often made. People often use the results as their closest interaction with

the data.

That is not to say that there hasn’t been any textual analysis. In areas other

than information retrieval, there has been a lot of textual analysis done, such as in

natural language processing. The results we have found are similar to what has been

found in natural language processing. For example, an important topic in statistical

natural language processing is Zipf’s law, which says that the term distribution within

a corpus obeys a power law distribution. We are interested in the term distribution

for a subset of the corpus, namely for an individual document, and we find that

the term distribution within a document obeys a power law distribution. Natural

language processing also describes the inter-document term clustering we find, calling

it “burstiness”[25]. Salva Katz applies some of what she found in here statistical

natural language analysis to several problems, including information retrieval. The

analysis that she performs is similar in many ways to what we describe in Chapter 4.

Some data analysis has been done with respect to information retrieval as well,

and particularly with respect to ad-hoc retrieval methods, such as during the early de-

velopment of vector space models [40]. More recently Warren Greiff revisits the origin

of the vector space model, and uses data analysis of relevant and irrelevant document

sets to understand the relationship between term frequency and the mutual informa-

tion between relevance and term occurrence [12]. Through this analysis he finds a

“flattening” of the typical term rarity indicator, the inverse document frequency, at

document frequency extremes, and uses this to improve information retrieval. Textual

analysis has also been used to look at the effect of length for document normaliza-

tion [4], as well as to understand the usefulness of stemming [5]. In related areas to

40

information retrieval, it has been used in text document summarization [11].

In our work we will similarly use data analysis in the hopes of improving retrieval,

but with the goal of understanding what are the appropriate features for our Bayesian

model, rather than improving the ad-hoc vector space method. In this way we are

most similar to the work done by Harter in using textual analysis to develop his

2-Poisson model for retrieval [15].

2.3.3 TREC

A common set of documents for both testing and data analysis is important because

documents in different corpora could conceivably be written in very different manners,

and therefore have significantly different statistical properties. This is obvious when

considering documents in different languages, but likely true for different topics as

well. Retrieving over a collection of law review articles may be different from retrieving

over Web pages.

Additionally, which documents are relevant to a person’s search may be difficult

to determine, especially because searches are often under specified. Although two

people may both search for “Granny Smith apples”, the correct result set could be

very different for each person. A baker might be interested in the apple with respect

to pies, while a farmer might instead be interested in Granny Smith apple trees.

And if testing an individual system seems complicated, just imagine how much more

complicated it gets when you want to be able to compare results across different

systems.

Because of this, the information retrieval community has developed a common

framework for testing. Each year at the Text REtrieval Conference (TREC), a new

corpus, set of queries, and a result set for testing against, are published. Donna

Harman gives a good introduction to TREC [14]. While there is still some room

for variation within this framework, in general it greatly facilitates evaluation, both

internally to one’s experiments, and across different experiments. In addition to

allowing for comparison across models, the existence of a large and common corpus

for IR has fostered much of the data analysis that has begun in recent years [18]. We

41

use the TREC framework for our data analysis and evaluation.

42

Chapter 3

Multinomial Model

The purpose of this thesis is to understand how to improve probabilistic models for

information retrieval by using textual analysis. Because of this, let us first look more

closely at a very simple probabilistic model, the multinomial model, in order to have

a starting point for our textual analysis. The generative model we describe here for

our version of the multinomial model is the same as the one proposed by Kalt [20],

although the details of how these two models are used to perform retrieval differ.

We have already discussed the fundamentals of a probabilistic model in Section

2.2.3. Here we will focus only on the details of the multinomial model, discussing

the specific implementation we use, as well as how we estimate the parameters for

this model. We will conclude by discussing the results we find using the multinomial

model. The differences in the statistical properties of the text from what is expected

given this model will be used to help us develop a new model for information retrieval,

and we will discuss that in the following chapter on textual analysis. The results we

find here will be used as a baseline when testing the new models that we build based

on our textual analysis.

Recall the “Granny Smith apples” example we followed throughout Chapter 2.

We will use it again here to aid in our description of the details of the multinomial

model. Specifically, recall that the “Granny Smith apples” corpus, separated into

groups of relevant and irrelevant documents, looks like this:

Irrelevant:

43

1. all apple cultivate fruit most tree wide

2. apple apple away day doctor eat keep lot

5. apple apple apple apple apple apple cider juice make pie sauce strüdel use

Relevant:

3. apple apple granny green red smith washington

4. apple apple granny granny green smith smith wide

3.1 Description of Model

In this section we will elaborate on the probabilistic model framework we discussed in

Section 2.2.3 to arrive at the multinomial model. In our discussion we will first talk

about how the model assumes that the corpus in generated and then focus specifically

on how we use these generative assumptions to rank documents for retrieval. Given

this understanding of the model we will also look at the expected performance of a

system.

3.1.1 Generative model

Let us describe the generative model corresponding to a multinomial probabilistic

model. This model takes a very simple view of the world. While you may know that

when you sit down and write a document, you are drawing on your understanding

of natural language, and your knowledge of the topic about which you are writing,

we’re going to assert that what happens is actually much simpler. It is, after all, the

purpose of a model to simplify the real world into something that we can work with.

Recall for a probabilistic model that, given a query, documents are assumed to be

generated by sampling from either relevant or irrelevant distributions. Like we did

during our discussion of the probabilistic model, here we again will assume that the

query is a given, and talk only about the relevant and irrelevant term distributions

relating to this query.

44

Let us look at one of the simplest ways we could generate a document from a

relevant and irrelevant distribution. First, we choose a length � for the document we

are generating. Then we flip a coin to determine if we are going to generate a relevant

or irrelevant document. If the coin comes up relevant, we independently sample terms

from the relevant distribution � times. If the coin comes up irrelevant, we similarly

draw a term from the irrelevant distribution � times. Each term in the document is

found by sampling with replacement from the appropriate distribution. This means

that the probability of selecting a term when sampling is always the same.

For example, if in our example corpus the term “apple” has a probability of

being selected from the relevant term distribution of 0.25, then if our coin flip comes

of “relevant”, more or less one out of every four times we draw from the relevant

term distribution, we get the term “apple”. On the other hand, the probability of

drawing the term “pie” when creating a relevant document may only be 0.0001. This

would mean that only one out of every 10,000 times you sample from the relevant

distribution do you select that term. It is no surprise, then, that we wouldn’t see

“pie” in a relevant document in our example corpus.

Over simplification

This model for generating a document is clearly a gross over simplification. For

example, one clear over simplification is the assumption of term independence. We

know that a term’s appearance isn’t really independent of what other terms have

already been selected to appear in the document. When you create a document, the

use of one word often implies the use of another word. For example, if we begin

our document with the words “Granny Smith”, the probability of drawing the word

“apple” should be higher than “stethoscope”. The advantage of assuming that the

probability of generating a term is independent from what has already been drawn

is that we do not need to worry about all of the interactions that terms may have.

This means we don’t need to make assumptions about all of those interactions, many

of which we surely don’t have enough data to fully understand. It also means that

we don’t need to account for all these interactions when retrieving, which improves

45

retrieval efficiency. It is for this reason that such an assumption is very popular in

probabilistic models.

Another objection to this over simplification that is specific to the multinomial

model that we describe is that we know a term’s probability of occurring in a docu-

ment for a second time is probably higher than the term’s probability of occurring in

any random document. And yet the multinomial model says even if the the document

says “apple, apple, apple”, we’re only as likely to draw the word “apple” again as we

were when we first began the document.

3.1.2 Using the model for retrieval

Now that we have our generative model, let us understand how we will rank docu-

ments using it. Since the multinomial model is most easily described in mathematical

notation, let us now quickly define the notation that we will be using. We will then

use that notation to describe how we rank documents, and go through an example.

Notation

j An index into the jth document in the corpus. When we use j = 3, for example,

we are referring to Document 3.

n The number of documents there are in our corpus. In our example case, n = 5.

i The value i is an index representing the ith unique term in the corpus. For example,

we take all 25 unique terms above and give each term an index value. The term

“all” might get an index of i = 1, the term “apple” an index of i = 2, and the

term “granny” an index of i = 21.

m The number of unique terms that appear in the corpus. There are 25 unique terms

in the “Granny Smith apples” corpus.

rj A boolean value representing whether or not document j is relevant. If rj = 1,

document j is relevant. If rj = 0, document j is irrelevant. All documents are

are assumed to be either relevant or irrelevant. r is a vector representing all of

46

the relevance values. The dimensions of r is equal to the number of documents

in our corpus, n. For us, r =
[
0 0 1 1 0

]
.

dj
i The value for d

j
i represents the number of times that the ith term occurs in doc-

ument j. For example, d4
21 counts term 21, the term “granny”, in document 4

(Granny Smith apples are green and Granny Smith apples are wide.). It has the value

2. The vector dj consists of all of the dj
i values for a particular document j,

and represents everything we know about that document. The vector dj has as

many elements as there are unique terms (m). All of the documents together

can be represented in an m× n matrix D with rows dj.

prel The probability that a document is relevant. It is the value for Pr(rj = 1).

While we don’t necessarily know the true probability of relevance, we can find

the empirical probability of relevance. For our example corpus of 5 documents,

since there are 2 relevant documents, the empirical probability is prel = 2
5
= 0.4.

Note that the probability that a document is irrelevant is (1-prel).

θi This value represents the probability of drawing term i from the relevant probabil-

ity distribution. In the example we discussed it was 0.25 for the term “apple”

and 0.0001 for the term “pie”. The relevant term distribution can be expressed

as a vector, θ.

θ̂i Similarly, the value θ̂ represents the probability of drawing term i from the irrele-

vant distribution. The irrelevant distribution can also be expressed as a vector,

θ̂.

Ranking

Recall that in a probabilistic model, we are interested in the probability that a docu-

ment is relevant, since we will rank our results by this value. In Chapter 2 we saw in

Equation 2.1 that we can use Bayes rule to transform the problem into that of finding

47

the probability a document was generated from the relevant distribution.

Pr(rj = 1|dj) =
Pr(dj|rj = 1)Pr(rj)

Pr(dj)

Since we are interested in ranking specifically by the probability of relevance (as

opposed to the probability of irrelevance), let us consider the case where rj = 1. We

know that Pr(rj = 1) = prel. We also know that Pr(dj) = Pr(rj = 1)Pr(dj|rj =

1) + Pr(rj = 0)Pr(d
j|rj = 0). Thus

Pr(rj|dj) =
prel Pr(dj|rj = 1)

prel Pr(dj|rj = 1) + (1− prel) Pr(dj|rj = 0)

Given all of this information, the only thing left for us in order to find Pr(rj|dj
i) is to

understand the probability that a document was drawn from a certain distribution,

Pr(dj
i|rj = 1) and Pr(d

j
i|rj = 0).

Given the assumptions we have for how our corpus was created, by independently

sampling from a relevant or irrelevant probability distribution, we can express the

probability of seeing a document given it was generated from a particular probability

distribution as merely the product of the probability of seeing each term it contains.

As we mentioned earlier, this is one of the advantages of assuming term independence.

What we find for the probability that a document was generated from the relevant

distribution is:

Pr(dj|rj = 1) ∝
m∏

i=1

Pr(dj
i |rj = 1)

∝
m∏

i=1

θ
dj

i
i

Not included in the above equation is the multinomial coefficient that should be in-

cluded because we are treating the document as a bag of words where word order

does not matter. However, it is a constant, so we will ignore it for now. The prob-

ability that a document was generated from the irrelevant distribution can similarly

be expressed as
∏m

i=1 θ̂
dj

i
i .

48

Relevant Irrelevant
all 0.02 0.05

apple 0.16 0.18
away 0.02 0.03
cider 0.03 0.01

cultivate 0.02 0.01
day 0.01 0.04

doctor 0.01 0.02
eat 0.02 0.06
fruit 0.05 0.04

granny 0.09 0.05
green 0.08 0.04
juice 0.02 0.01
keep 0.02 0.06
lot 0.01 0.04

make 0.03 0.03
most 0.03 0.04
pie 0.02 0.04
red 0.04 0.01

sauce 0.03 0.04
smith 0.11 0.05
strüdel 0.02 0.02
tree 0.05 0.04
use 0.01 0.02

washington 0.03 0.03
wide 0.07 0.04

Table 3.1: The underlying probability that a term will occur in relevant and irrelevant
documents our “Granny Smith apples” corpus (θ). Given we know these values,
finding the probability a document is relevant is straight forward. Estimating these
values is fundamental to retrieving a document using the multinomial model.

Now it is simple to calculate the value we need for ranking within the multinomial

model given that we know the relevant and irrelevant term distributions:

Pr(rj = 1|dj) =
prel

∏m
i=1 θ

dj
i

i

prel
∏m

i=1 θ
dj

i
i + (1− prel)

∏m
i=1 θ̂

dj
i

i

(3.1)

Example

Let us say we do know the distributions that the relevant and irrelevant documents

in our example “Granny Smith apple” corpus was generated from. The distributions

49

we assume can be found in Table 3.1. Given the distributions, it is easy to find the

posterior probability of relevance of each document in the corpus. For brevity, when

finding the probability of relevance of a document we show only the terms that occur

in that document. Terms not appearing in the document can safely be ignored. If a

term that does not appear in a document it has a value dj
i = 0. Since θ

0
i = 1, these

terms will not factor into the product in Equation 3.2.

1. Pr(d1|r1 = 1) =
0.4(0.02·0.16·0.02·0.05·0.03·0.05·0.07)

0.4(0.02·0.16·0.02·0.05·0.03·0.05·0.07)+0.6(0.05·0.16·0.01·0.04·0.04·0.04·0.04)
=

0.49

2. Pr(d2|r2 = 1) =
0.4(0.162·0.02·0.01·0.01·0.02·0.02·0.01)

0.4(0.162·0.02·0.01·0.01·0.02·0.02·0.01)+0.6(0.162·0.03·0.04·0.02·0.06·0.06·0.04)
=

0.00

3. Pr(d3|r3 = 1) =
0.4(0.162·0.09·0.08·0.04·0.11·0.03)

0.4(0.162·0.09·0.08·0.04·0.11·0.03)+0.6(0.162·0.05·0.04·0.01·0.05·0.03)
=

0.94

4. Pr(d4|r4 = 1) = 0.4(0.162·0.092·0.08·0.112·0.07)
0.4(0.162·0.092·0.08·0.112·0.07)+0.6(0.162·0.052·0.04·0.052·0.04)

=

0.97

5. Pr(d5|r5 = 1) =
0.4(0.166·0.03·0.02·0.03·0.02·0.03·0.02·0.01)

0.4(0.166·0.03·0.02·0.03·0.02·0.03·0.02·0.01)+0.6(0.166·0.01·0.01·0.03·0.04·0.04·0.02·0.02)
=

0.27

We see that document 4 has the highest probability of being relevant, followed by

document 3, and so on. The results seem reasonable.

3.1.3 Efficiency

Let us pause briefly to consider the efficiency with which we can expect to perform

retrieval using this ranking function. We will consider for now the case where we

know the appropriate distributions. Dividing Equation 3.1 through by
∏m

i=1 θ
dj

i
i we

get:

Pr(rj = 1|dj
i) =

prel

prel + (1− prel)
∏m

i=1

(
θ̂i

θi

)dj
i

(3.2)

50

This equation gives us an absolute value for the probability of relevance of a

document, and enables us to provide a cardinal ranking. However, if we only care

about the order that we rank documents, then we could consider an ordinal ranking

to be sufficient. In this case we would only care about whether a document was more

likely to be relevant than another document, and not by how much. You will note that

in Equation 3.2 Pr(rj = 1|dj) is monotonically decreasing with respect to
∏m

i=1

(
θ̂i

θi

)dj
i

.

This means it is monotonically increasing with its inverse,
∏m

i=1

(
θi

θ̂i

)dj
i

. Ranking by

this value will give us the same results as ranking by the posterior probability of

relevance, Pr(rj = 1|dj).

This ranking value highlights one of the advantages of the very simple model

that we have described. A document’s rank can be found by looking at only one

parameter per term, per distribution. We can go further than that, however. As we

saw in the example, terms not appearing in a document can safely be ignored. This

means that to find the value by which we will rank a document, we need only consider

two values for each term that appears in that document. In practice, we may even

assume that for most terms, those which are not content terms, the probability of

the term appearing in a relevant document is equal to the probability that it appears

in irrelevant documents. This allows us to ignore these terms as well, since if θi = θ̂i

we know
(

θ̂i

θi

)dj
i

= 1. We will elaborate on how we can ignore most terms in practice

further in Section 3.2.5.

3.2 Finding the Term Distributions

Given the equation that we will be ranking by is a function of θ and θ̂ you can see

that finding the relevant and irrelevant term distributions is at the heart of being able

to retrieve using this model. In this section we will explain how we estimate these

values.

First we will give a straight forward example of one way to estimate the distri-

butions using our “Granny Smith apples” corpus. We will go through an example of

retrieving with these estimates. The example will highlight some of the problems that

51

arise when trying to estimate the distribution. We will then discuss how we solve the

problems that arise using a Bayesian technique called a prior. We will explain how

we make our initial estimates of the term distributions given that we are not provided

in advance with the relevance judgments that we have for our example corpus, and

talk about how we use machine learning in an attempt to improve on those initial

estimates.

3.2.1 Example

Let us consider the information we have available to us to estimate the term dis-

tribution for our example corpus. We know the empirical values for the probability

that a term occurs in a relevant or irrelevant document in that corpus. One way we

could estimate the relevant and irrelevant distribution would be to take the empirical

distribution to represent the actual distribution.

Let us look at what these distributions look like given that we are estimating

the distributions in this way. There are nine occurrences of the term “apple” in the

irrelevant documents, and 28 term occurrences in total in the irrelevant documents.

This means that our estimate for the probability that you will draw a term from

the irrelevant distribution when creating the documents is 9
28
= 0.32. We can find

the probability of drawing the term “apple” from the relevant distribution as well.

There are four occurrences of the term in the relevant documents, and 15 terms total,

meaning that we estimate the term has a probability of 4
15
= 0.27 of being selected

to occur in relevant documents. The empirical distribution can be seen in Table 3.2.

On the other hand, we will estimate that “smith” has a probability of appearing

in the irrelevant documents 0
28
= 0.00 and 3

15
= 0.20 in the relevant documents, which

is a significant difference. Note that there is a much larger difference between the

estimated probability that “smith” will be drawn from a particular distribution (0.00

versus 0.20) compared to the estimated probability that “apple” will be drawn (0.32

versus 0.27). This could be interpreted to reflect that “smith” is a more descriptive

term than “apple”.

Let us look at the results we will get using the empirical term probability dis-

52

Relevant Irrelevant
all 0.00 0.04

apple 0.27 0.32
away 0.00 0.04
cider 0.00 0.04

cultivate 0.00 0.04
day 0.00 0.04

doctor 0.00 0.04
eat 0.00 0.04
fruit 0.00 0.04

granny 0.20 0.00
green 0.13 0.00
juice 0.00 0.04
keep 0.00 0.04
lot 0.00 0.04

make 0.00 0.04
most 0.00 0.04
pie 0.00 0.04
red 0.07 0.00

sauce 0.00 0.04
smith 0.20 0.00
strüdel 0.00 0.04
tree 0.00 0.04
use 0.00 0.04

washington 0.00 0.04
wide 0.07 0.04

Table 3.2: The empirical probability that a term will occur in relevant and irrelevant
documents in our “Granny Smith apples” corpus. While using the empirical probabil-
ity of term occurrence is one way to estimate the underlying probabilities, it requires
large amounts of labelled data to do suitably, and has several other problems as well.

53

tribution we can estimate from our example corpus to retrieve documents from our

example corpus. Again, for brevity, we will only show the terms that appear in each

document.

1. Pr(d1|r1 = 1) =
0.4(0·0.27·0·0·0·0·0)

0.4(0·0.27·0·0·0·0·0)+0.6(0.04·0.32·0.04·0.04·0.04·0.04·0.04)
= 0

2. Pr(d2|r2 = 1) =
0.4(0.272·0·0·0·0·0·0)

0.4(0.272·0·0·0·0·0·0)+0.6(0.322·0.04·0.04·0.04·0.04·0.04·0.04)
= 0

3. Pr(d3|r3 = 1) =
0.4(0.272·0.20·0.13·0.07·0.20·0.07)

0.4(0.272·0.20·0.13·0.07·0.20·0.07)+0.6(0.322·0·0·0·0·0) = 1

4. Pr(d4|r4 = 1) =
0.4(0.272·0.202·0.13·0.202·0.07)

0.4(0.272·0.202·0.13·0.202·0.07)+0.6(0.322·02·0·02·0) = 1

5. Pr(d5|r5 = 1) =
0.4(0.276·0·0·0·0·0·0·0)

0.4(0.276·0·0·0·0·0·0·0)+0.6(0.326·0.04·0.04·0.04·0.04·0.04·0.04·0.04)
=

0

While this produces a ranking we like (documents 3 and 4 are ranked first, and then

the rest of the documents), there are some obvious problems with these results.

3.2.2 Problems

The examples makes clear a couple of difficulties with the probabilistic model as

we’ve described it on top of the obvious problem of where we get perfectly labeled

documents from which to estimate our term distributions. First, note that since we

are dealing with very small values the numbers can get very small, very quickly. To

solve this problem, something that is often done is to take the log of the probability

function. For example, taking the log of Pr(dj|rj) would give us
∑

i d
j
i log(θi). Recall

that if we are only performing an ordinal ranking, this is a fine thing to do, since the

log function is monotonically increasing. Note that small numbers are only really a

“problem” during implementation, but we also often find it convenient during analysis

to use sums instead of products.

Additionally, you have probably noticed that because some terms never occur in

the relevant document set, we estimate that they have a zero probability of occurring

in relevant documents. This means that if we have not seen a term occurring in any

of our labeled relevant information during the distribution estimation process, we

will end up giving the lowest possible probability of relevance to any document that

54

contains that term. We’ll end up doing this even if the document has other strong

evidence supporting its relevance. If a new document, Granny Smith apples are fruit.

were introduced, it would get a very low ranking since “fruit” has not been seen in

any relevant documents. By taking the empirical probabilities of terms occurring to

be the actual probabilities, we have obviously made an error. We have over-fit our

estimates to the data. For this reason this problem is called “over-fitting”.

The method that we have just used to estimate the probability distribution is

a classical approach. This means that we take only the information immediately

available to us, and estimate the distribution from that. But that has the problem

of giving some terms a zero probability of occurring when we know that must not be

the case. While classical models overcome this problem with heuristics, we will take

a more principled approach, the Bayesian approach. In a Bayesian model we would

include the prior belief we have about term occurrence in addition to the information

available to us. We would place a prior expectation of seeing any term to be somewhat

greater than 0.

Another potential problem arises regarding document length. As we discussed, the

probability of a document given that it was generated by the relevant term distribution

(Pr(dj|rj = 1)), is the product of the probability of the occurrence of each term in

the document. Since the probability of a term occurring in a document is less than

one, this value will be significantly smaller the more terms there are in a document.

That this value is smaller for longer documents shouldn’t be a problem, since it is

normalized by the probability that the document was generated by the irrelevant

term distribution (Pr(dj|rj = 0)), which is also smaller.

However, the longer the document, the greater the variation you will see in the

probability of a document being generated from either distribution. There are more

terms in the document, so we are more sure about whether the document is relevant

or not. Small differences in θi and θ̂i will accumulate to make for a large difference

in the overall probability. This isn’t necessarily a bad thing, but is something to

consider. In more complex models, there is often much done to deal with length, such

as document length normalization.

55

3.2.3 Prior

Let us understand what it means to have a prior belief about something. Imagine

that you had a coin, and when you flipped it, it came up either heads or tails. When

you get the coin, you think it is probably a fair coin, meaning that you expect to get

heads with equal probability of getting tails. But if you flipped it 10 times, and each

time it came up heads, you might start to think that the coin was biased. On the

other hand, if you first flipped the coin two hundred times, of which only hundred

of those flips came up heads, you might think that the ten heads in a row is just

a statistical fluke. In fact, seven heads in a row is very likely in two hundred flips,

and ten heads is not all that unlikely. Likewise, if your mother gave you the coin,

and promised that it was fair, meaning you had a very strong prior belief in the coin

being fair, then you might also be willing to accept the 10 heads as a statistical fluke,

and not vary your expectation of whether the coin will come up heads or tails too

drastically.

We can express our belief about the coin by saying that we have some prior

probability distribution on what we expect from the coin. This distribution we will

as a distribution over the random variable θ. We can tell you whether we expect the

next coin flip to be heads or tails by telling you what is likely given the probability

distribution over θ. We express the prior distribution θ mathematically with a Beta

prior. The Beta prior is described by two parameters: αh, which measures our prior

belief that the coin will come up heads, and αt represent our prior belief that the coin

will come up tails. We also let α = αh+αt. One way to understand these values is to

view them as the imagined number of times that you’ve already seen the coin come

up either heads or tails.

θ is a random variable that represents the probability that the coin will come up

heads. However, we don’t actually know what value θ is; we want to estimate it.

What we do know is the probability distribution for θ, which is a Beta distribution:

p(θ) = Beta(θ|αh, αt) =
Γ(α)

Γ(αh)Γ(αt)
θαh−1(1− θ)αt−1

56

In this equation, Γ(·) is the Gamma function which satisfies Γ(x + 1) = xΓ(x) and

Γ(1) = 1.

To find what we believe our odds of getting heads on the next flip, we integrate

over θ. By solving
∫
θBeta(θ|αh, αt)dθ we find that the probability of the coin landing

heads is equal to the expectation of θ, E[θ] = αh

α
.

What is convenient about the Beta prior is that it can be updated easily with new

observations. If we observe h heads and t tails after flipping the coin several times,

and had a prior Beta(αh, αt), then our posterior Pr(θ) = Beta(αh + h, αt + t). This

means that we can update our belief about the probability of flipping a head to be

αh+h
α+h+t

.

Let’s go over the example we gave earlier, this time using the specifics of the Beta

prior to illustrate the example. Suppose we get a coin from a shady looking character,

we might have a prior belief that the coin is fair, but we don’t feel very strongly about

it. In this case we might choose αh = 4 and αt = 4. If we flip the coin, and get ten

heads in a row (t = 0, h = 10), then our expectation for getting a head the next time

we flip the coin would be 4+10
4+4+10+0

= 0.78. The coin no longer looks very fair. But if

we were to have flipped the coin 200 times first, and gotten 100 heads and tails each,

with our new observations we only arrive at t = 100 and h = 100 + 10. In this case

we would expect the probability of flipping a head to be 4+110
4+4+110+100

= 0.52, or still

basically fair. Similarly, if our mother gave us the coin, we might assign a prior of

αh = 100 and αt = 100. Now, even if we flip ten heads straight off the bat (t = 0,

h = 10), we still think the coin is basically fair (100+10
100+100+10+0

= 0.52).

The Beta prior can be generalized to the multinomial case, in which case it is

called a Dirichlet prior. We place a Dirichlet prior on the relevant term distribution.

For each unique term i we assign a prior belief of the weight that term carries in the

relevant distribution to an associated variable, αi. We make αi proportional to the

number of times that that term occurs in our corpus.

p(θ) = Dir(θ|α1, α2, . . . , αr) =
Γ(α)∏r

i=1 Γ(αi)

r∏
i=1

θαi−1
i

57

Integrating this, we find our prior belief of drawing term i from the relevant probability

distribution is αk

α
. As in the coin-flipping example, where we observed whether we

rolled a head or a tail, as we perform learning over our corpus, we will observe the

number of times that term i occurs in relevant documents to update our belief as to

the probability of drawing term i from the distribution. Let us represent the number

of times we see term i occurring in a relevant document as si (
∑

i si = s). Again,

like the Beta distribution, the Dirichlet distribution has a nice update rule. After our

observations of si, the expected value for the probability of drawing term i from the

relevant distribution is simple to compute (αi+si

α+s
). For a more in depth discussion of

Beta and Dirichlet priors, see Heckerman’s tutorial [17]. In subsequent discussion we

will refer to our expectation of θi as ϑi.

3.2.4 Initial distribution estimate

We want to make an estimate about the term distribution. The only information that

we have available to us is the distribution of terms throughout the corpus and the

query. We know nothing specifically about the relevant or irrelevant distributions,

but that does not mean that we want to take the classical approach and say we know

nothing about the probability of a term appearing. After all, we do know that the term

“apple” is probably more likely to appear in general than the term “bailiwick”. Using

our knowledge of priors, let us first talk about how we will estimate the irrelevant

distribution, and then talk about how we will estimate the relevant distribution.

Irrelevant distribution

We can begin our estimation of the irrelevant term distributions by making the as-

sumption that by far most documents are irrelevant. This implies that the irrelevant

term distribution should more or less equal to the corpus term distribution. Because

of this, if the probability of seeing a term in the corpus at large is 0.0001, then we

will take the probability of that term being selected when an irrelevant document is

generated to also be 0.0001.

58

In our “Granny Smith apples” example, the probability of seeing the term “green”

throughout the entire corpus is 2
43
= 0.0465, and this is what we would take as the

probability of seeing the term “green” in an irrelevant document. This value, in our

example case, is clearly very far from the 0 probability the term “green” empirically

has of appearing in irrelevant documents. This is because the assumption that there

are many more irrelevant documents than relevant documents doesn’t hold, and also

because the corpus is rather small to be making any sort of generalization with.

Relevant distribution

We have described how we estimate the irrelevant term distribution. We still need

to find the relevant term distribution. In estimating the relevant term distribution,

we will assume that the query, having been hand generated by the user, contains

terms that are particularly representative of the relative term distribution. If we

were to assert that the query term distribution represents the entire relevant term

distribution, then we will encounter the problem we discussed in Section 3.1.2, namely

that the probability of most terms appearing in relevant documents will be 0, causing

the probability of relevance of every document to be 0.

To avoid this problem we will start with some non-zero probability of seeing each

term in relevant documents. For example, one thing we could do is to also say

that the relevant distribution is equal to the corpus distribution, with the exception

that each query term’s probability of appearing increased in some way. The corpus

distribution could represents our prior belief, before seeing the query terms, about

what the relevant term distribution looks like. We could then update this prior belief

with our belief that the query terms are particularly likely in the relevant distribution.

Once we have this starting point, we would be able to do retrieval with this initial

distribution, or we could use it as a starting point for unsupervised learning of the

distribution.

One way to incorporate the query is to directly alter the relevant term distribution.

The query consists of hand selected words that have been determined by the user as

being, we assume, highly representative of the relevant distribution. As we have

59

said, we have a prior belief of the distribution based on the corpus distribution. By

fiddling with the prior, such as, for example, by doubling the prior probability of the

query terms appearing, these terms can be made more likely to appear in relevant

documents. This allows for a very direct control of the way that the query effects the

framework.

Another way to deal with the query is to treat it as a relevant document. We

could assume that the user generates the query terms by sampling from the relevant

distribution, and then the user tells the system that this “document” is relevant.

While this fits nicely into the framework it does not express the importance of the

query as clearly. This results in some problems relating to learning that we will

discuss in Section 3.2.7.

The first approach is nice because it expresses clearly the true importance of the

query terms. The second approach is nice because it somehow seems less arbitrary

than fiddling with numbers. The system is currently implemented using the second

approach. However, with the understanding that the terms a query contains are

particularly important, we have experimented with treating it like several documents,

instead of just one, and we will discus the effect that this has on the results later.

3.2.5 Efficiency

We saw earlier that using the multinomial model we can produce search results very

quickly. We will now discuss the details of how this initial distribution estimate allows

us to retrieve documents with performance time comparable to the search algorithms

most commonly used in practice.

We saw earlier in Section 3.1.3 that an ordinal ranking can be obtained using∏m
i=1

(
θ̂i

θi

)dj
i

. Let us begin our investigation into this value by looking separately

at how our estimate for the probability of a term i occurring in the relevant and

irrelevant distributions, namely ϑi and ϑ̂i. Initially, before we incorporate the query,

ϑi = ϑ̂i. Note that ϑ̂i actually never changes, since we have such a strong prior belief

in it, so it will always be equal to our initial estimate of ϑi.

On the other hand, our estimate for ϑi changes after we observe the query. Recall

60

from our discussion of priors that we have an initial value for our prior belief of seeing

term i, αi, such that we believe the value for ϑi is
αi

α
. Let qi represent the number of

times a term i appears in the query, and q =
∑

i qi. Since the query is the only thing

we will have observed, we know that

ϑi =
αi + qi

α+ q

Let us return to the value from Equation 3.2 we said we were ranking by, and

express it in terms of αs and qs.

m∏
i=1

ϑ̂
dj

i
i

ϑ
dj

i
i

=
m∏

i=1

(
αi+qi

α+q

)dj
i

(
αi

α

)dj
i

=

m∏
i=1

1

(
α

α + q

)dj
i
(
αi + qi

αi

)dj
i

The first part of this equation is constant for all documents, and can therefore safely

be ignored for the purpose of ranking, leaving us with a simple ranking function:

∝
m∏

i=1

(
αi + qi

αi

)dj
i

Most terms aren’t query terms. For these terms qi = 0, and αi+qi

αi
= 1, meaning

that these terms will not effect our results. Additionally, most query terms occur

only once. With these assumptions, we find that we can rank documents with the

following function:

∏
i∈q

(
1 +

1

αi

)dj
i

(3.3)

Essentially, each term i appearing in a document contributes 1
αi
to the document’s

score. Since αi is a function of the corpus frequency of a document, this gives us

61

a reasonable motivation to use the inverse corpus frequency for relevant documents.

By taking the log of this value we get a vector space variation, where the weight of

each term i is log(1 + 1
αi
). A vector space model with this term weighting would

produce the same ranking as Equation 3.3 does, both giving the document a ranking

of
∑

i∈q d
j
i log(1 +

1
αi
).

3.2.6 Learning the distribution

Let us now look at how we learn the relevant term distribution by updating the

initial term distribution we discuss in Section 3.2.4. Learning is a relatively slow

process, and if we attempt to learn the relevant distribution at retrieval time, we

will no longer be able to find results as quickly as we do using a vector space model.

However, we use learning to better understand our model. If our model is a good

one, we should be able to improve performance by arriving at a better estimate for

the term distributions.

We will use a simple machine learning technique called “Expectation Maximiza-

tion” (EM). Expectation maximization is a greedy algorithm that performs simple

iterative hill climbing from whatever starting point it is given to find a nearby local

maximum. As we discussed in Section 2.2.3, we will use EM in this case to find

the relevant probability distribution that makes our corpus most likely, given our

multinomial generative model.

Here we discuss in detail how we use EM to find the relevant term distribution

that makes the corpus most likely. During the “expectation” step we compute what

we expect to see from the information we have. The “expectation” step represents the

results we would compute if we didn’t have any opportunity for learning. During the

“maximization” step we force the likelihood of the corpus to increase by optimizing

the values for the relevant term distribution. The learning process involves iterating

over these two steps until the likelihood of the corpus given the relevant distribution

stops changing, or some other stopping condition is reached.

62

Expectation

In the expectation step, we find the best relevance judgments that we would expect

given the term distribution we have at this point. This means finding the poste-

rior probability of relevance for the document, which we describe in Equation 3.1.

With the most current Dirichlet distribution over the θis, we can find the expected

probability that we would see term i in a relevant or irrelevant document, ϑ and ϑ̂.

Plugging these values into Equation 3.1 we can compute the posterior probability of

relevance for each document as follows.

Pr(rj = 1|dj) =
prel

∏m
i=1 ϑ

dj
i

i

prel
∏m

i=1 ϑ
dj

i
i + (1− prel)

∏m
i=1 ϑ̂

dj
i

i

Note that since we have a Dirichlet prior, we could update our belief about seeing a

term throughout the expectation step, after each new observation of a term. However,

EM does not traditionally do this since it is a more general learning technique that

does not require a Bayesian prior.

Maximization

In the “maximization” step of our learning, we maximize the likelihood of observing

our corpus by altering the Dirichlet distributions. Note that, as we have mentioned

before, for efficiency we assume there are many more irrelevant documents than rel-

evant documents (prel
 (1− prel)). This means we will only concern ourselves with

updating the relevant distribution on each iteration. The irrelevant document dis-

tribution we assume to be so close to the corpus distribution that it is not worth

updating; we already have so much prior evidence as to what it is that new informa-

tion will not tell us anything new.

As we have seen with our discussion of priors, it is easy to update a Dirichlet

distribution by adding each observation we have of term i to si. Therefore, for the

relevant distribution, for each occurrence of each term i in each document j, we have

to update si. If we were sure that the document the term were in were relevant, we

63

would add the number of occurrences of the term in that document (si = si+d
j
i for all

term in all relevant documents). But we’re not sure. We only have our belief about

the probability that that document is relevant, the posterior probability of relevance

that we computed in the “expectation” step. What we do in this case is add to si is

the posterior probability of relevance for that document times the observed number

of occurrences of term i in that documents:

si = si + Pr(rj = 1|dj) · dj
i ∀i, j

3.2.7 Setting Constants

We now understand our implementation of the multinomial model fully. However,

even given this model, which defines so much of the problem for us, there is quite a bit

of room to tweak different constants in ways that effect the results. In this section we

will discuss what constants are available for tweaking, and how we set them. These

constants include the prior probability that a document is relevant, the strength of

the prior we use for the relevant term distribution, and the strength with which we

include the query into the relevant term distribution.

Prior probability of relevance

The prior probability that a document is relevant, prel, is an important value. Note

that for ordinal ranking without learning, this value doesn’t matter. However, it

does determines the weight we put on our estimate that a document is relevant in

comparison to our estimation that a document is irrelevant. And yet in our analysis

we have taken this value as a given. How should it be set? Because we do not

want to worry about the effect of this value during our experiments, we set it to the

correct value for each query. For example, if we were performing a query where 10

documents out of 10,000 were known to be relevant, we would set the prior probability

of relevance to be 0.001.

A more principled way that we could set this value would be to represent this

value as a Beta distribution. Initially we might expect to see some small number of

64

relevant documents, just as we initially expected our coin to be fair, but as we learn,

and find either a lot of documents that appear to be relevant, or a lot of documents

that appear to be irrelevant, we could adjust this belief. That way we could vary

the actual number we did see somewhat, so that we will not find documents to be

unreasonably likely to be relevant or irrelevant. The importance of this variable, and

how to best set it is something we’re interested in investigating in the future.

Strength of prior

Another constant that we have control over is the strength of our belief in the prior

term distribution of relevant documents. We saw in the coin tossing example that

weird behavior from a coin given to us by our mother is accounted for much differ-

ently than weird behavior in a coin given to us by a shady character. We have already

mentioned that the only term distribution we know at the outset is the corpus dis-

tribution, and that that distribution is used to establish our prior belief of the term

distribution in both relevant and irrelevant documents. We need to incorporate the

query terms into that distribution in a way that expresses their importance. Should

the observation of the query terms and the subsequent feedback from documents that

we judge to be relevant effect our belief about the relevant distribution a lot or a

little? Essentially, does our initial belief that the distribution of relevant terms re-

sembles the corpus distribution come from our mother, or a shady character? The

strength of our belief is reflected in the magnitude of the αis.

Initially we assert that since we know that documents have a certain prior prob-

ability of being relevant, prel, we also have a prior belief about how many documents

are relevant, preln. We set our prior for the relevant term distribution to be as strong

as if we had seen preln documents with the corpus distribution. The rationale behind

doing this is that if we were to observe the true set of relevant documents, they would

have an impact on the distribution, but not overwhelmingly so. However, we have

tried scaling this value as well, and will discuss the effect of the strength of the prior

on the results in Section 3.3.2.

65

Strength of query

As we discussed earlier in Section 3.2.4, we treat the query like a labeled document

that we know is relevant. However, the query is not actually just a labeled rele-

vant document. It consists of words that have been hand chosen by the user to be

representative of the documents he is interested in.

That we treat the query as just a document results in some problems during

learning. Since the query is a very short document, it can easily be overpowered by

other documents that are also determined to fall into the relevant distribution. For

each query term qi, the related number of observations of the term, sq, is updated.

This reflects the fact that the query term is relevant. However, every other document

that is judged at least somewhat relevant has many occurrences of many other terms.

Each term i in each slightly document updates its respective si as well. Even though

the probability of these other documents of being relevant may low, there are so many

other documents that the cumulative effect can large. If these longer documents cause

some terms to outweigh the query terms, then we could get documents that aren’t

necessarily related to the query. This is called “topic drift”.

For this reason, we have experimented with making the importance of the query

stronger as well, and treating it as 5, 10, or even 100 documents. The results from

these experiments are discussed in Section 3.3.2.

3.3 Results

Let us look at how the multinomial model performs. As we discussed in Section 2.3,

this is the most common point of interaction with the data for IR researchers. In this

section first we will talk about the corpus on which we performed our tests. Then we

will talk about what sort of results we found, as well as discuss our investigation into

why we got the results we did.

66

3.3.1 Corpus

Because the potential computational complexity when using machine learning and

because we wanted to be able to investigate manually the results of the proposed

system, we decided to do our initial testing on a small subset of the TREC corpus.

We used the Wall Street Journal articles from TREC Volume 1 and 2 that are relevant

to the TREC topics 51-150. This includes articles from the years 1987-1992. The

resulting corpus consists of 9,465 documents. This corpus is sufficiently small that

we can perform the tests that we want to without having to worry too much about

efficiency, while being large enough to give us at least some idea of how successful

different trials are. From the corpus we removed all stop words and case. For the

queries we use in testing, we selected the topic descriptions from the TREC topics

51-150. These are short, 2 to 3 word descriptions of the topic.

Note that our results are somewhat better than what is commonly seen in other

information retrieval research. This is likely due to the odd construction of our corpus.

We use only documents that are relevant to queries, so the probability of relevance is

higher than over a standard TREC corpus. If we were to use the entire TREC corpus,

chances are some of the irrelevant documents not included in our corpus would get

ranked highly, cluttering the ranking. Larger scale testing is necessary to really be

able to compare our results with other systems.

3.3.2 What we found

In this section we will discuss the results we found for retrieval using the multinomial

model in two ways. First we will discuss the results we get when ranking using the

initial estimate of the relevant term distribution we discuss in Section 3.2.4. We will

then talk about what we found after doing learning with our model. What we find is

that the learning generally hurts the performance of the model, implying that there

is a flaw in the model.

Recall from Section 2.3.1 that the metric we will be using to evaluate the results

is a precision-recall graph. Precision is the fraction of retrieved documents that are

67

relevant, while recall is the fraction of all relevant documents that are retrieved. The

better the performance, the further up and to the right on the precision-recall graph

the results curve will be. Because we are testing over 100 queries, we will average the

curve for each query to get a curve that describes the overall behavior of the system.

Posterior probability of relevance

Ranking by the posterior probability of relevance, using the initial term distribution

discussed in Section 3.2.4, where we include the query as a relevant document in the

corpus term distribution, performed reasonably well. In Figure 3-1 you can see the

results compared with tf.idf, the standard ad-hoc retrieval method that we explained

earlier in Section 2.2.2. This is not surprising, since in Section 3.2.5 we found it to

produce results that are very similar to what we use for tf.idf.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

tf.idf
Multinomial

Figure 3-1: Results found using the multinomial model. The relevant distribution
used is the initial estimated distribution. Results are compared with tf.idf.

68

Tuning initial retrieval We also investigated the effect that varying the two con-

stants we discuss earlier, the prior weight and the query weight, has on the results

found using the initial distribution estimates. When we refer to the prior weight, we

are referring specifically to the number of times stronger we make the prior than what

we discuss in Section 3.2.7. When we refer to the query weight we mean the number

of relevant documents that the query is counted as. The default for this is one, but

we test query weights of up to 1000.

Without any learning, the effect of changing these two variables is the same. This

can be seen in Equation 3.3. You can see that doubling the prior for term i, αi, has

the same effect on the ranking as halving the query weight, qi, would. Thus raising

the query weight is the same as lowering the prior probability, and visa versa. We

will look, therefore, only at the effect of query weight on the results curve.

In Figure 3-2 we show the results for a variety of query weights. In general, a

higher query weight improves precision in the low recall areas, while lowering it in

the high recall areas. As you can see, while the query weight does effect results

somewhat, it needs to undergo a large change to significantly effect the results. It is

interesting that if the query weight is set too high, the results actually get worse. This

is because the query as a document totally overshadows all other term distribution

information, including the prior probability of seeing the query term. Instead, each

query term gets treated as equally informative about the query. “Granny Smith” is

no longer being treated as more descriptive than “apples”.

With learning

When we tried to learn the relevant distribution, the performance of the model got

worse. In Figure 3-3 you can see the performance after various different number of

iterations of EM. Each iteration causes worse results. Again, this could imply that

something is wrong with our model, or it could imply that something is wrong with

our learning algorithm.

69

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

QW=1
QW=10

QW=100
QW=1000

Figure 3-2: Results found using the multinomial model. The relevant distribution is
the initial estimated distribution with varying query weights.

Tuning retrieval learning Again, we investigate the effect the different constants

we discuss has on results. Setting the prior to be stronger improved performance

during the learning processes. This can be seen in Figure 3-4. Here we graph the

results after one iteration with different prior knowledge weights. The curves with

high prior knowledge weight are very similar to the curves with no learning. This

is because our prior is so strong that new information barely effects our expected

probability of seeing terms occur in the relevant term distribution.

We also graph the results after one iteration with different query weights. Increas-

ing query weights generally hurt performance, probably for similar reasons that high

query weights hurt performance when no learning was performed.

Figure 3-5 shows one of the most successful combination of constant settings that

we found. We wanted some generalization to occur, so we did not set the prior weight

too high, in which case the curve would look very similar to the curve with no learning.

The prior and the query are scaled up the same amount so that with no learning the

70

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Iterations=0
Iterations=1
Iterations=2
Iterations=3
Iterations=4
Iterations=5

Figure 3-3: Results found using the multinomial model. The relevant distribution is
found using learning. Results are compared for different number of iterations during
the learning process.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Prior: x1
Prior: x10
Prior: x100
Prior: x1000

(a) Changing prior knowledge weight

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

QW: 1
QW: 10

QW: 100
QW: 1000

(b) Changing query weight

Figure 3-4: Results found using the multinomial model. The relevant distribution is
found using learning, with different values for the prior weight and query weight set.

71

performance is the same as the performance in Figure 3-1. But you can see that with

learning the results are not significantly worse they way there were with our original

constant settings.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

No learning
Learning

Figure 3-5: Results found using the multinomial model. The relevant distribution is
found using learning, with good values for the prior weight and query weight set.

Topic drift Something we can see when looking at the text of the results produced

by our retrieval system, and that is also apparent from graphs such as Figure 3-5, is

that there is topic expansion/drift. The purpose of machine learning is to generalize,

and we can see the generalization happening with the improved precision in the high

recall area of the curve. The problem is that it is drifting in a way that hurts precision

in the low recall area of the curve. In terms of our example, while without iterations

we find documents only on “Granny Smith apples”, with learning we generalize to

find all documents on “apples”. By doing so we find some relevant documents that we

didn’t know about before, meaning that our recall improves, but the greater number

of irrelevant “apple” documents push some of the good, relevant “Granny Smith

72

apples” documents down lower in the ranking, decreasing precision.

When documents are found to be relevant without learning, these documents are

generally relevant (high precision in the low recall area). When we iterate, however,

other less relevant documents are included because they match on terms that are

present in the initial relevant documents that are not descriptive of the query. At

times the topic expands and drifts so much that relevant documents are placed with

a very low ranking. This is common in relevance feedback systems, but, ideally, with

a good model, should not be a problem.

3.3.3 Why we found what we found

That learning a more likely probability distribution for relevant documents hurt the

performance of the model implies that there must be something wrong with our

system. The problem could stem from one of two sources: the method for estimating

the underlying distribution could be flawed, or the model itself could be flawed,

and would not be successful even with the correct distribution. We investigate the

performance by experimenting with using the “correct” probability distribution to

retrieve documents in hopes of understanding where the flaw lies.

Performance with correct distributions

We want to understand if our estimation of the term distributions was at fault for our

poor performance, or if the fault actually lies in the multinomial model. For example,

our EM algorithm may be reaching a local maximum for the term distribution that is

not anywhere near the global one. To understand if this was the case we did several

things.

First we created artificial documents according to our model, and ran the learn-

ing on them. The learning performed well when given input that was generated as

expected. So we know that the model could work if its assumptions were correct.

We then tried setting the relevant distribution to be the actual term distribution in

relevant documents. To do this we set the probability of relevance for each document

73

that is relevant to 1. We continued to use a prior, however, so that the results would

not be unfairly biased by having some terms have a 0 probability of occurrence.

As you can see in Figure 3-6, the retrieval performance of the multinomial model

is actually worse with the correct relevant distribution set. While recall does go up,

precision goes way down. The terms in the relevant documents not related to the

query are over powering those that are. EM finds a more likely distribution than the

correct relevant term distribution from this starting point, so the correct distribution

clearly does not maximize the probability of seeing our corpus. The results after

learning are even worse.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

No learning
With learning

Correct distribution, no learning
Correct distribution, learning

Figure 3-6: Results found using the multinomial model. The relevant distribution is
the correct distribution.

74

Chapter 4

Textual Analysis

We want to use data analysis to understand which assumptions in our multinomial

model are the most broken, and work to fix them. As we have argued before, if we

make the model match reality better, we should be able to improve retrieval. In

order to do this, we have looked at the information that is available in the statistical

properties of text in a number of different ways. We will describe what we have found

from our analysis in this chapter.

We will focus on looking for a term distribution that explains the entire corpus

better than the multinomial distribution. This means that we will not be looking

specifically at the relevant and irrelevant distributions. However, it is our hope that

by better modeling the corpus distribution, we will also be able to better model the

relevant and irrelevant distributions, and use these models to improve retrieval.

Looking only at the corpus term distribution has the advantage of allowing us

to work with a large amount of data. If we wanted to look specifically at just the

relevant distribution, since we only have a few relevant documents for each query, it

would be difficult to draw conclusions based on the information available to us. Using

the corpus distribution to understand the two term distributions that we care about

is valid if we assume that the relevant and irrelevant distributions can be described by

the same model, and that there are many more irrelevant documents in the corpus,

so many that they dwarf the effect of the relevant distribution. The first assumption

is worth investigating, as we will discuss in the section on future work, Section 6.1.1.

75

The second is reasonable given the TREC corpus.

In this chapter we will first briefly describe the corpus that we will be using for our

textual analysis. We will then talk about our goals in performing textual analysis, de-

scribing in further detail specifically which assumption we will attempt to understand

better, and what constraints we will continue to impose on our understanding of the

data. After explaining the terminology that we use throughout our data analysis, we

will talk about some of the ways we find the multinomial model does not match the

textual data we analyze. Finally, we will explore what we can learn from the data so

that we can build a model that more accurately reflects reality. In the next chapter

we will discuss how we incorporate some of what we learn into a probabilistic model

and the effect that that has on retrieval.

We will continue to use the “Granny Smith apples” corpus to illustrate our dis-

cussion. Recall that it looks like this:

1. all apple cultivate fruit most tree wide

2. apple apple away day doctor eat keep lot

3. apple apple granny green red smith washington

4. apple apple granny granny green smith smith wide

5. apple apple apple apple apple apple cider juice make pie sauce strüdel use

4.1 Corpus

While we used a fairly small corpus to test our multinomial model, for our data

analysis we want a larger corpus to work with. We use all of the documents from

TREC volume 1. This set includes documents from the Wall Street Journal, the

Associated Press, Department of Energy Abstracts, the Federal Register, and Ziff.

The document set contains 510,636 documents in total. As with the smaller corpus

we use for testing, we remove stop words from the documents, but do not do any

stemming. Stemming would reduce the number of terms and increase the number of

76

occurrences for each term, thus increasing the density of the data. However, it would

also hide information about the terms [33].

One of the reasons we are interested in working with a larger corpus is that we

often want to look at terms that are the same with respect to many of the statistics

we will discuss in Section 4.3, such as the length of the document in which the term

appears, or the corpus frequency of the term. We will motivate this binning further

in the next section. In order to look at such a specific set of terms, and yet still have

enough data to generalize about the term occurrence distribution for terms within

the bin, we need a large initial corpus.

4.2 Goal of Textual Analysis

While we have said many times in this thesis that we are going to explore the as-

sumptions that the model we build is based on in order to build a well grounded

model, we do not actually address every assumption. There are so many assumptions

involved in our model that we will only focus on a small subset of them: those that are

encompassed within the probabilistic framework, relating simply to term occurrence.

We will not question whether stemming or stop word removal is useful. We will not

investigate if using something other than words as our terms would be better (such

as treating “Granny Smith” as a single term, rather than two). Nor will we question

if probabilistic models for information retrieval are valid.

That the data doesn’t appear multinomial is not surprising. The multinomial

model is a very simple one. It is a model that tries to express something as complex

as a large collection of natural language documents by using only one parameter per

term. Given this, when we do our data analysis, the question we should be asking is

not, “Is it possible to more accurately model the data?” as it surely is given a more

complex model, but rather, “Is there a similarly simple model that more accurately

models the data?” If we can find this, we should be able to improve the results the

model produces while not hurting retrieval efficiency.

Two of the reasons we want to continue to work with a small number of parameters

77

are practical. Using a similar number of parameters ensures that the efficiency of the

algorithm will remain comparable. Also, fewer parameters make for simpler, more

tractable math. This makes it is easier to understand what is happening within our

model. It is best to start with the most straightforward model possible, and then

build from there.

Using only one parameter per term can also be motivated from a theoretical

standpoint. The more parameters we need to estimate from the data, the more likely

we are to over-fit our model. Without an extremely large amount of data it is difficult

to estimate an extremely large number of parameters.

In order to impose the requirement that the conclusions we draw from the data

allow us to build a simple model, in addition to assuming the corpus has been gener-

ated by a probabilistic model, we will continue to assume that terms are independent

of each other. For example, we will assume that the occurrence of the terms “granny”

and “smith” in a document do not imply that the word “apple” is likely to appear in

the document. People have tried to work around the independence assumption with

dependence trees [43] and Bayes nets [38]. We will not do this.

Instead, we will continue to assume that there is an underlying distribution for

each term that describes the term’s occurrence entirely. This distribution can be

seen empirically in the term occurrence probability distribution (t.o.p.d.). Given

the probabilistic framework we are working in, and the assumption that terms are

assumed to be independent, the only information we have about the documents is the

number of times each term occurs in a document. Therefore, to understand a term,

it makes sense to look at its t.o.p.d. By t.o.p.d. we mean specifically the number of

times that the term occurs exactly one time, the number of times it occurs exactly

two times, etc.

For example, the term “granny” occurs exactly zero times in three of the doc-

uments in our example corpus, exactly one time once, and exactly two times once.

For all other occurrences, the term occurs zero times. Figure 4-1 shows the t.o.p.d.

for “granny”. Throughout our analysis, we will try to discover a better underlying

term probability distribution function (t.p.d.f.) that describes the t.o.p.d. that we

78

observe.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

P
ro

ba
bi

lit
y

Term occurs exactly w times

Figure 4-1: An example t.o.p.d. for the term “granny” in our example corpus. By
looking at a term’s empirical t.o.p.d. we hope to be able to find the underlying hidden
parameter we assume describes the term’s occurrence.

Specifically, we will look for a t.p.d.f. that can be described with only one param-

eter. For the multinomial model, we used the hidden parameter of the probability

that a term occurs to describe what the multinomial model assumed was a term’s

t.p.d.f. We will see that the t.p.d.f. postulated by the multinomial model does not

match the data.

Let us briefly discuss our strategy when looking for a term’s hidden t.p.d.f. Be-

cause each particular term is rare, a term’s t.o.p.d. may be very noisy, varying greatly

from its underlying hidden t.p.d.f. We would like to be able to draw generalizations

and average out the noise in the data. Therefore, throughout the course of our analy-

sis, our goal will be to collect many terms with what we hope are the same underlying

t.p.d.f.s to understand better what parameter describes it. The average of many em-

pirical t.o.p.d.s that have been created by the same t.p.d.f. should approach the

actual function.

Of course, we do not know the underlying t.p.d.f., so we cannot actually bucket

terms by it. Instead, we will attempt to approximate this hidden t.p.d.f. through

combinations of different statistics available to us from the corpus. Therefore, we will

79

bin the terms by combinations of the different statistics we will describe in Section 4.3.

We do not, however, want our binning to hide the information contained by the hidden

t.p.d.f. for each term because we have binned together many terms with different

underlying probability density functions. This will be the challenge throughout our

investigation.

4.2.1 Finding the hidden t.p.d.f.

Let us discuss how we bin by a certain statistic in the corpus in our attempt to find the

hidden t.p.d.f. with an example. We assume that in addition to the hidden t.p.d.f.,

the observable t.o.p.d. for each term is affected by the length of the documents in

which the term appears. For this reason we begin our investigation by removing

length as a factor. Here we will describe the procedure we use to gather all of the

terms that appear in documents of similar lengths by binning documents of the same

length. Although we describe the procedure with respect to this specific example, we

will follow the same procedure each time we want to look at terms that are similar

with respect to a certain statistic.

Binning by document length

Although it is irrelevant in the multinomial model, document length is often difficult

to account for in probabilistic models. Because of this, many models assume constant

length documents. We choose to remove document length as a statistic throughout

the majority of our statistical analysis, allowing us, for the purpose of our analysis, to

work with a constant length assumption. We will visit the effect of document length

on the term distribution when it becomes necessary, in Section 5.1.3.

Because we want to be able to have enough data to draw valid conclusions, we

would like the largest group of documents of the same length as possible. In order

to do this, we look at the distribution of document length throughout the corpus.

In Figure 4-2, you can see the number of documents at different lengths for each

document sets that comprise our corpus (such as Wall Street Journal articles, or

80

Associated Press articles), as well as for the corpus as a whole.

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 d

oc
um

en
ts

Document length

Total
AP

DOE
FR

WSJ
ZIFF

Figure 4-2: The number of documents of length n. Document length displayed by
source, and for the corpus as a whole.

We are interested in looking at documents of any given length. However, there

just aren’t that many documents that are the same length. As you can see, even if

we were to take the most popular document length, we would still only have around

3,000 documents to work with. This is not very many if you consider we begin with

over 500,000.

To gather more documents of a certain length, rather than choosing documents

of just one length we use documents that are “similar” in length. By this we mean

that rather than requiring our documents to be of length exactly 100, we will allow

the documents to perhaps have a length of 99, or perhaps have a length of 101. We

want to create bins of documents of similar lengths, and then choose the largest bin.

When binning, we use exponentially increasing the boundaries of the bins so that the

longest document in a bin is a most 110% the length of the shortest document in the

bin. In Figure 4-3 you can how many documents fall into each of the bins of similar

81

document length. Note that because the bins are growing exponentially, the x-axis,

which represents the average length of the documents in each bin, is on a log scale.

When we use documents that are similar in length rather than exactly equal, we get

many more documents in our bins.

0

5000

10000

15000

20000

25000

30000

10 100 1000

B
in

 c
ou

nt

Average document length in bin

Documents binned by length

Figure 4-3: The number of documents within a bin. Each bin represents a document
length range. The length range of a bin grows exponentially to keep the relative
variation within a bin similar.

There are two humps in bin size that can be seen in Figure 4-3. We take the

bins that represent the top of both humps. Table 4.1 shows some details of the

two document length bins we selected. Note that while Data Set 1 has many more

documents than Data Set 2, the number of term occurrences in Data Set 2 is greater.

From now on, when we refer to Data Set 1 and 2, we will be referring to these two

subsets of the corpus.

82

Data Set 1 Data Set 2

Number of documents (n): 25,295 10,530
Average document length (�): 125.4 431.5

Number of unique terms: 78,462 88,692

Table 4.1: Description of the two sub-corpora we will analyze. Each sub-corpus
contains documents of the same length.

4.3 Terminology

It will be useful to define some terminology for our data analysis. We will be discussing

the effect of different statistics on the term occurrence distribution, and in order to

avoid having to define them repeatedly, we will define them now. We will discuss how

we arrived at some of these statistics later on, in Section 4.5.1. Because sometimes it

is difficult to understand exactly what certain statistics mean, we will give examples

with respect to our “Granny Smith apples” corpus.

Corpus frequency The number of times that a term occurs throughout the entire

corpus. This includes repeated occurrences of a term within the same document.

In our example corpus, the corpus frequency of the word “apple” is 12, while

the corpus frequency of the word “red” is 1. In equations, and occasionally for

brevity, we will refer to the corpus frequency of term i as cfi. cfi =
∑n

j=1 d
j
i

Empirical term probability This is the empirical probability that, if you ran-

domly selected a term from the entire corpus, that you would select a particular

term. You will recall that the true value of the term probability is important

for the multinomial model we discussed in the previous chapter. The empirical

term probability is what we used in the multinomial model to try to estimate

θ. It is equal to the corpus frequency divided by the total number of terms

in the corpus (cfi∑m
i=1 cfi

). The probability of the term “apple” appearing in our

example corpus is 12
43
= 0.28, and the probability of the term “red” appearing in

our example corpus is 1
43
= 0.02. We will occasionally refer to a term’s empirical

probability as pi. Note that this value is not the same as the θi we discuss in

Chapter 3 because pi is the observable value, where as θi represents the actual

83

value used to generate the documents.

Document frequency The number of documents that a term occurs in. In this

value we do not include repeated occurrences of a term within a document. In

our example corpus, the document frequency of the word “apple” is 5, while

the document frequency of the word “red” is 1. We will sometimes refer to

document frequency as dfi. If we assume that [statement] evaluates to 1 if the

statement is not equal to zero and 0 if the statement is equal to zero, then

dfi =
∑n

j=1[d
j
i > 0]

Conditional average When we use the words “conditional average” when referring

to a term, we mean the average number of times that a term appears in a

document, given that the term appears in the document. The average number

of times a term occurs if we do not precondition on its occurrence is proportional

to the corpus frequency (cfi

n
). When we do condition on appearance, this value

is equal to a term’s corpus frequency divided by its document frequency (cfi

dfi
).

“apple” appears in every document in our example corpus, for a total of 12

occurrences. This means that while the average number of times it appears in

the corpus is 12
43
= 0.28, the average number of times “apple” occurs given that

it has occurred is 12
5
= 2.4. On the other hand, “granny” appears three times

in only two documents, so by our definition of average, the average occurrence

of “granny” is 3
2
= 1.5. If we refer to the average value of a term conditioned

on occurrence in an equation, we will refer to it as avgi.

We will also be interested in the effect that document length has on these statis-

tics. Sometimes we will work with only documents of the same length in order to

understand the other factors without the influence of length. Other times we will ex-

plicitly include length to understand its effect on term occurrence. There are several

different things we could be referring to when talking about document length, and

we will define them here:

Length Here we refer to what is typically thought of to when discussing document

length. This is the number of terms that occur in the document, including re-

84

peated occurrences of the same term. The length of document 4 in our example

corpus is 8. �j =
∑m

i=1 d
j
i .

Unique words This refers to the number of unique words in a document, and will be

occasionally expressed as uj. Repeated occurrences of terms within a document

are ignored. The number of unique words in document 4 is 5. If we again assume

that [statement] evaluates to 1 if the statement is true and 0 if the statement

is false, then uj =
∑m

i=1[d
j
i > 0].

Another statistic that we will sometimes mention is the number of documents

in the corpus. We define this as n in Section 3.1.2 and will continue to refer to it

as such. You should note that here this value is dynamic because we occasionally

work with subsets of the larger corpus we are using for data analysis. For example,

we might want to only work with documents of more or less the same length in our

example corpus. Say we decide we are only interested in documents of length 7 or 8

(documents 1, 2, 3 and 4). This means we would be working with n = 4 rather than

n = 5.

4.4 Data Not Multinomial

It does not take a very much exploration into the data before we see that the dis-

tribution of terms throughout documents does not seem to have come from a fixed

multinomial. In this section we will discuss a couple of the ways that the data shows

us this. One is that the number of unique terms that occur in a document of a certain

length is much smaller than would be expected given the multinomial model. We also

find that the t.o.p.d. has a much heavier tail than the multinomial model predicts.

The evidence we see in the text documents suggests that people reuse words that

they have already used in a document. On the other hand, the multinomial model we

describe says that a term has the same probability of appearing in a document after

we have used the term a number of times as it does in a document in which it hasn’t

yet appeared. For example, once we use the words “Granny Smith apples” at the

85

beginning of this document, it is likely that we use them again. And indeed, in this

document, we often do. If we hadn’t first mentioned Granny Smith apples before,

though, you would be less likely to expect to see the words here. On the other hand,

the multinomial model we describe would say that the “Granny Smith apples” is only

as likely to appear again as it is to appear in the next document you read. While this

term behavior could perhaps be explained by a mixture of multinomial distributions,

such an explanation would require us to break away from the extremely simple model

with which we have been working and with which we want to continue to work.

4.4.1 Unique words

Let’s look at the number of unique words in a document (uj) compared with the

length of a document (�j). Given the multinomial model, the expected number of

unique words is the sum of the probability of seeing each term at least once in a

document of that length. Mathematically, this can be expressed as:

E[uj|�j] =
m∑

i=1

1− (1− θi)
�

We can approximate this by using the pis for each term in our corpus instead of the

θis. In Figure 4-4 you can see what we would expect from the multinomial model

for the number of unique terms compared with document length. This is compared

with what we actually see in our corpus. Note that since there is a lot of variation in

the actual data, with a wide variety of unique terms to be found in documents of the

same length, we have binned the data to make the overall pattern more obvious. The

standard deviation of each bin is plotted to give you an idea of the variation within

the bin.

4.4.2 Heavy tailed

The reason we postulate there are many fewer unique terms in a document of a given

length is, as we mentioned earlier, once a term is used in a document, it is likely

86

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000

U
ni

qu
e

w
or

ds
 in

 d
oc

um
en

t

Words in document

Data
Expected

Figure 4-4: Number of unique terms in a document compared with the number of
terms in a document. Graph displays empirical values and what is predicted given
the multinomial model. For clarity, the empirical data has been binned. Error bars
on the empirical data represents the standard deviation within each bin.

87

to be used again. One way to confirm this is to look at the distribution of term

occurrences throughout the corpus. If, once a term has occurred in a document, it is

much more likely to occur again, we should see, for example, the probability of that

term occurring two times in a document is much higher than the multinomial model

expects.

We find that the term occurrence probability distribution actually does have a

much heavier tail than is predicted by the multinomial model. First, let us look at

what we expect from the model. Because it is multinomial, the probability that a

term occurs exactly ω number of times in a document is a function of the probability

of that term occurring at all in the corpus (pi). It can be expressed as follows:

Pr(ω) =

(
�

ω

)
pω

i (1− pi)
(�−ω)

≈ (�pi)
ω

ω!

To understand what sort of distribution we can expect from this equation, let us

consider a very similar distribution, a binomial distribution. For our binomial model

we will be flipping a coin. If you flip a coin once, you’d expect to get head with a

probability of 1
2
. If you flip a coin twice, you’d expect to get heads both times with

a probability of 1
2
· 1

2
= 1

4
. When you flip the coin a third time, you’d expect to

get heads with a probability 1
2
· 1

2
· 1

2
= 1

8
. You can see that this probability of your

observing all heads goes down exponentially with the number of times you flip the

coin. Similarly, given the multinomial model, we will expect each term’s t.o.p.d. to

be roughly exponential.

We would like to compare what we expect the term occurrence probability dis-

tribution to be with what we observe. Given the multinomial model, if we know the

probability of a term occurring, we also know the term’s t.o.p.d. To see if the data

matches what is expected from the model, we can compare, for a given pi, the t.p.d.f.

assumed by our multinomial model with the empirical t.o.p.d. we find in the data for

terms with that pi.

Again, rather than looking at the empirical t.o.p.d. for just one term, we will bin

88

terms with a similar empirical probability of occurring in hopes of averaging out the

noise present in the observation of each term. In order to work with a large set of

terms, let us look at all terms that have more or less the same empirical probability

of occurring in the corpus as the average term in the corpus. For Data Set 1 the

average term has a probability of 1
78462

= 0.0000127 of occurring, and in Data Set 2

a term has, on average, a probability of 1
88692

= 0.0000113 of occurring.

Taking all terms that have similar empirical probabilities of occurring to the values

discussed above, we are able to find the average t.o.p.d. for these terms. You can

see in Figure 4-5 the actual term distribution for these terms, compared what the

multinomial model would predict the term distribution would be. The average term

has a probability of occurring zero times that is almost one, since most documents

only contain a very small number of the possible terms they could contain. The

probability of occurring exactly one or more times is almost zero for most terms. For

this reason, the y-axis is shown in a log scale so that we can see greater detail. Since

the expected distribution is nearly exponential, it appears as a straight line. You can

see how much heavier the tail is than expected with the multinomial model, and that

the probability of a term occurring alone is lower than would be expected.

1e-35

1e-30

1e-25

1e-20

1e-15

1e-10

1e-05

1

0 2 4 6 8 10

P
ro

ba
bi

lit
y

Term occurs exactly w times

Data
Multinomial

(a) Data Set 1

1e-30

1e-25

1e-20

1e-15

1e-10

1e-05

1

0 2 4 6 8 10

P
ro

ba
bi

lit
y

Term occurs exactly w times

Data
Multinomial

(b) Data Set 2

Figure 4-5: The empirical t.o.p.d. for terms compared with what is expected from the
multinomial model. Terms occurrence appears to be more clustered than expected.

89

4.5 Exploring the Data

We have seen that what we would expect given the multinomial model doesn’t match

the statistical properties data. In this section, now, we explore the data in order to

understand the statistical properties of the text better so that we can build a model

that better matches them. We will discuss what we have found in our data exploration

with the constraints we impose in Section 4.2, focusing specifically on the correlation

between different statistics and the term occurrence distribution for terms that are

similar with respect to one or more statistic. In both of these explorations, we look

at the statics for documents of a uniform length, working only with Data Set 1 and

2.

4.5.1 Possible statistics that describe the hidden t.p.d.f.

We will investigate combinations of the statistics we discuss in Section 4.3, in hopes of

understanding what one parameter best describes the term occurrence distribution,

and what sort of behavior they exhibit. In this way we hope to find the hidden t.p.d.f.

that describes a term distribution. In this section we will discuss how we selected the

statistics we choose to look at.

Several of the statistics we describe we select because of their presence in infor-

mation retrieval literature. Specifically, we investigate document frequency because

it is a very common statistic used in vector space models. We choose to investigate

a term’s corpus frequency because, as we have mentioned, it is related to a term’s

probability of occurrence, and therefore to the term’s behavior in the multinomial

model.

We also try several experimental approaches to arrive at the hidden parameter.

In this section we will first talk about how we try to use unsupervised learning to

find the hidden parameter for us. Then we will talk about the correlations between

different statistics with the term occurrence values to understand our statistics.

90

Clustering

Initially we would like to investigate what commonalities there are among terms by

grouping them without forcing onto the groupings any of our preconceived notions

about what we expect to see. To do this, we use a clustering algorithm in hopes of

creating clusters of terms that are similar with respect to the hidden parameter we are

trying to find. We know that the hidden t.p.d.f. must imply the term’s distribution.

For this reason we try to cluster terms with similar empirical probability distributions.

Here we will first discuss how we perform the clustering, and then we will discuss what

we learn from it.

How we cluster We use a k-means clustering algorithm to cluster the terms in our

corpus. k-means is a very simple greedy clustering algorithm. The way it works is

to chose k points to act as cluster centers. Each data point is then clustered around

the closest center. Using the points in the cluster, a new center is computer, and the

process is repeated until no points change clusters any more.

k-means is similar to the machine learning technique “expectation maximization”

that we use for learning the probability of a term occurring in a relevant document

in the multinomial model. However, what it really is “maximization maximization”,

a lower bounds on EM. For each term, k-means finds the center that is most similar

to that term. If this were an “expectation” step, we would find the probability of it

belonging to each cluster. Instead, we maximize the term’s location by placing it in

the most likely cluster. Then, given a cluster and all of the terms it contains, k-means

finds the center that maximizes the likelihood of that cluster.

Because we believe most of the information is contained in the first few occur-

rences, we truncate the t.o.p.d. and use only the number of times the term occurs

zero times in a document, the number of times the term occurs one time, two times,

three times, and four or more times. For the purpose of clustering, then, we represent

each term as a vector of hs, where h0 is the number of documents in which the term

occurs exactly 0 times, h1 is the number of documents in which the term occurs ex-

actly once, and so on, up to h4, which represents the number of times a term occurs

91

four or more times in a document.

Initially, k-means is started with random cluster centers. These centers are created

by randomly selecting a term from the data, and then modifying its value slightly by

adding or subtracting small random values. During each iteration, we recompute the

cluster center. We choose the center as the distribution that maximizes the likelihood

of the points in the cluster by averaging the t.o.p.d. for each term in the cluster.

Note that it is often the case that after iterating a cluster center is left with no

terms in the cluster. When this happens we replace the center with a randomly

selected term. By choosing an actual term we are guaranteed that at least one term,

namely the term that is the center, will fall into that cluster on the next iteration.

Distributing terms into clusters involves finding the “closest” center to each term.

To do this we must find the distance of a term from each cluster center. The distance

function we use in clustering isn’t a standard Euclidean distance, but rather the

probability that the point was generated by each center. If we have a cluster center

g, where gi represents the number of times a term at the center occurs exactly i times,

and g is the sum of all gi, then the expected probability of a term generated by the

center occurring exactly i times is gi

g
. If we look at a particular term’s distribution,

which, as we mentioned earlier is expressed as h, we can find the likelihood that the

distribution was generated by the center in the following way:

distance =

(
h

h0, h1, h2, h3, h4

) 4∏
i=0

(
gi

g

)hi

∝
4∏

i=0

(
gi

g

)hi

This value is monotonically increasing with its log, so we will use
∑4

i=0 hi log
gi+1

g
as

our distance function. Note that we add to 1 to gi so that even if there is no term

in the cluster that occurs exactly i times in a document, a new term that does could

possibly be added to the cluster.

92

What we learn We are unfortunately unable to learn much from clustering. Re-

gardless of how many centers we start with, most of the terms end up falling into

one cluster. We can try to get rid of outliers by taking that one cluster, and then

trying to sub-clustering it. But still we find the same behavior. This implies that

most terms are very similar to each other. Not surprisingly, the large cluster that

we find has a term distribution that looks very much like term distribution for the

average term that we see in Figure 4-5.

Because the k-means algorithm starts with random cluster centers, the results

of the clusterings do vary somewhat. Occasionally the clustering algorithm finds

a second largest cluster that contains a number of terms, enough terms not to be

considered an outlier group, although it does contain significantly fewer terms than

the large cluster. This small cluster has a term distribution where the term is more

likely to occur exactly two times than the large cluster, but slightly less likely to

occur any other number of times. We will see a similar dip and then rise in the

term probability distribution when we investigate the effect of average on the term

occurrence distribution (Section 4.5.2).

Correlation

Another way that we look for the hidden parameter is by looking at the ways in

which the term occurrence distributions are correlated with the statistics we are

interested in, as well as their correlations with themselves. By understanding a little

bit about which values available to us are related to each other, we can understand

what information about a term’s occurrence is not being represented in the statistics

we choose to investigate.

To show relationships between two statistics we use the correlation coefficient for

those two statistics. The correlation coefficient is equal to the covariance of the two

statistics normalized so that the value is 1 if the two statistics are perfectly correlated

and -1 if the two statistics are perfectly not correlated. This value gives us an idea

as to whether the statistics are linearly related.

Table 4.2 shows the correlation coefficients the relationships for some of the statis-

93

tics we have discussed with the term occurrence distribution. Notice that the corpus

frequency (cf) and document frequency (df) are, not surprisingly, both highly cor-

related with the number of times a term occurs exactly ω times. However, it is

surprising how uncorrelated they are with correlated with the probability of the term

occurring any number of times given that it has occurred. That is to say, based on

the correlation table, both document frequency and corpus frequency seem to give us

a good idea of how likely the term is to appear at all, but no idea of how many times

the term will occur once it has.

It was for this reason that we introduced the conditional average into our investi-

gations. The average number of times that a term occurs is, while hardly correlated

at all with the number of occurrences of a term, highly correlated with the probability

that the term will occur given that the term occurs at all, informing us about the

term in a way that cf and df do not.

While it is not surprising that corpus frequency and document frequency are

related to the number of occurrences and not the probability of occurrence given

that the term has occurred, and vice versa for average, it is slightly surprising how

uncorrelated each value is with what it does not explain. That is to say corpus

frequency and document frequency seem to say surprisingly little about the term’s

probability distribution given that the term has occurred, and average seems to says

surprisingly little about the overall number of occurrences of the term. This may

suggest that two parameters, and not one, are actually necessary.

Inter-term occurrence correlation Also included in the correlation table is the

correlation of the number of times a term occurs exactly once with all other values,

as well as the correlation of the probability that a term occurs exactly once, given

it has occurred, with the other statistics. Given how highly correlated values such

as the corpus frequency, document frequency, and average are with various aspects

of the term occurrence distribution, it is surprising to not see as strong a correlation

with these two values.

For example, while corpus frequency and document frequency are highly correlated

94

cf df avg Ex 1 Pr(ex 1|occ)
cf 1.00 0.92 0.02 0.77 -0.02
df 0.92 1.00 -0.01 0.96 0.00

avg 0.02 -0.01 1.00 0.02 -0.77
Exactly 1 0.77 0.96 -0.02 1.00 0.02

Pr(exactly 1|occurs) -0.02 0.00 -0.78 0.02 1.00
Exactly 2 0.84 0.90 0.01 0.81 -0.3
At least 2 0.97 0.83 0.03 0.63 -0.04

Pr(exactly 2|occurs) 0.01 0.01 0.18 0.00 -0.67
Pr(at least 2|occurs) 0.02 0.00 0.78 -0.02 -1.00

Exactly 3 0.87 0.78 0.03 0.61 -0.04
At least 3 0.88 0.62 0.04 0.37 -0.03

Pr(exactly 3|occurs) 0.01 0.00 0.31 -0.01 -0.43
Pr(at least 3|occurs) 0.02 -0.01 0.86 -0.02 -0.67

(a) Data set 1

cf df avg Ex 1 Pr(ex 1|occ)
cf 1.00 0.87 0.04 0.68 -0.05
df 0.87 1.00 0.01 0.94 -0.04

avg 0.04 0.01 1.00 -0.01 -0.62
Exactly 1 0.68 0.94 -0.01 1.00 -0.02

Pr(exactly 1|occurs) -0.05 -0.04 -0.62 -0.02 1.00
Exactly 2 0.80 0.93 0.02 0.81 -0.06
At least 2 0.94 0.90 0.03 0.69 -0.06

Pr(exactly 2|occurs) 0.03 0.03 0.10 0.02 -0.69
Pr(at least 2|occurs) 0.05 0.04 0.62 0.02 -1.00

Exactly 3 0.85 0.87 0.03 0.66 -0.05
At least 3 0.94 0.78 0.04 0.52 -0.06

Pr(exactly 3|occurs) 0.02 0.02 0.17 0.01 -0.40
Pr(at least 3|occurs) 0.05 0.02 0.74 0.00 -0.68

(b) Data set 2

Table 4.2: Correlation coefficients for various different statistics available during our
textual analysis. When the correlation coefficient is close to one the statistics are
highly correlated. A correlation coefficient that is close to negative one means that
the statistics are negatively correlated, and when it is close to 0 the statistics are not
correlated at all.

95

with the number of times a term occurs at least two times (ranging from a correlation

of 0.83 and upwards), the number of times a term occurs exactly one time has a much

lower correlation coefficient (around 0.65 in both data sets). Also worth noting is that

the probability that a term occurs exactly one time (given that the term occurs) is

negatively correlated with the probability that a term occurs two or three times,

given it has occurred. This is unsurprising because the the probability of occurring

zero times is so high as to be basically constant across terms, so when a term has a

higher probability of occurring exactly once, it is much less likely to occur some other

number of times.

Relationship between corpus frequency and document frequency As can

be seen in the correlation table, corpus frequency and document frequency are almost

linearly correlated. Document frequency is the more common metric showing up in

information retrieval, because it is used in vector space retrieval. However, since our

basic multinomial probabilistic model is based on a term’s probability of occurring, θi,

which is directly related to the term’s corpus frequency, we begin our investigations

with this value instead instead. After we understand somewhat the effect of corpus

frequency, we move on to use the more common value, document frequency, instead.

The linear relationship between the two will ideally means that the patterns we find

by investigating will also appear when investigating the other.

4.5.2 Finding the hidden t.p.d.f.

In this section we will discuss what we found in our search to understand the hidden

t.p.d.f. using the possibilities described in Section 4.3. We will specifically talk about

how we tried to find terms that are similar with respect to their hidden parameter

by binning terms with similar corpus frequency, document frequency, and conditional

average.

96

Corpus frequency

While document frequency is the more common statistic found in information retrieval

literature, we first look at corpus frequency because that is the statistic that relates

most directly to our multinomial model (since θi =
cfi∑n
j=1 �j

). For this reason, we begin

our analysis of the t.o.p.d. by looking at the effect that corpus frequency has on it.

To do this, within Data Set 1 and 2 we bin the terms by corpus frequency. Figure 4-6

shows the probability occurrence distribution for each corpus frequency bin. Because

a majority of the time the term occurs exactly 0 times in a document, we show the

graphs with the y-axis on a log scale.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

P
ro

ba
bi

lit
y

Term occurs exactly w times

CF: 4.42
CF: 10.7
CF: 20.2
CF: 34.1
CF: 54.5
CF: 85.8
CF: 132
CF: 200
CF: 305

(a) Data set 1

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

P
ro

ba
bi

lit
y

Term occurs exactly w times

CF: 4.42
CF: 10.9
CF: 20.2
CF: 34.1
CF: 54.4
CF: 85.2
CF: 131
CF: 200
CF: 305

(b) Data set 2

Figure 4-6: The t.o.p.d. for terms with different corpus frequencies.

An interesting thing to note about these graphs is that the lines for terms of with

different corpus frequencies appear to be evenly spaced. This leads to questions what

information is contained in knowing multiple occurrences of a term. It is interest-

ing that we see that the number of times a term occurs in a document might not

contain additional information, since using a term’s frequency of occurrence within a

document has become a common practice in IR often leads to retrieval performance

[26]. We investigate this further in Figure 4-7. Each line in these graphs follows the

probability that a term will occur a certain number of times as a function of the

term’s corpus frequency. We are essentially looking at a vertical slice of Figure 4-6.

For example, the straight line at the top of the graph shows us what the average

97

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10 100 1000

P
ro

ba
bi

lit
y

of
 o

cc
ur

rin
g

ex
ac

tly
 w

 ti
m

es

Term’s corpus frequency

w=1
w=2
w=3
w=4
w=5
w=6
w=7
w=8
w=9

w=10
w=11

(a) Data set 1

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10 100 1000

P
ro

ba
bi

lit
y

of
 o

cc
ur

rin
g

ex
ac

tly
 w

 ti
m

es

Term’s corpus frequency

w=1
w=2
w=3
w=4
w=5
w=6
w=7
w=8
w=9

w=10
w=11

(b) Data set 2

Figure 4-7: The probability that a term will occur exactly ω times as a function of
the term’s corpus frequency.

probability of seeing a term zero times for different corpus frequencies. At low corpus

frequencies this probability is almost one, and at high corpus frequencies, the proba-

bility is also one. Of course, it is not actually straight, but the minor variations are

hidden by the log scale. That it appears so straight implies that corpus frequency

does not have a relatively significant affect on a term’s probability of occurring zero

times.

On the other hand, the slanted line labeled “ω = 1” shows us what the expected

probability of seeing a term one time is. You can see that as a term’s corpus frequency

increases, so does the probability of seeing a term exactly once in a document. This

appears to be true for all values where ω �= 0.
That these lines are almost parallel implies that for terms binned by corpus fre-

quency, there is no new information in the number of times a term occurs once you

know that it has occurred. To investigate this further we graphed the probability

that a term will occur at least once compared to the probability that a term will

occur at least twice divided by the probability that the term will occur once. If there

is no new information in the probability that a term occurs at least twice, the graph

should be straight.

In Figure 4-8 you can see what we found. For Data Set 1 it is mostly straight in

the region where a majority of terms occur. The values flare up for high probabilities

98

of occurring exactly once, but this flare up represents a very small number of terms.

On the other hand, the flat region for Data Set 2 is slightly shorter, and, in fact, it is

arguable as to whether it really should be considered flat at all.

0

0.2

0.4

0.6

0.8

1

1e-05 0.0001 0.001 0.01 0.1 1

P
r(

oc
cu

rs
 e

xa
ct

ly
 2

/o
cc

ur
s

ex
ac

tly
 1

)

Pr(occurs exactly 1)

(a) Data Set 1

0

0.2

0.4

0.6

0.8

1

1e-05 0.0001 0.001 0.01 0.1 1

P
r(

oc
cu

rs
 e

xa
ct

ly
 2

/o
cc

ur
s

ex
ac

tly
 1

)

Pr(occurs exactly 1)

(b) Data Set 2

Figure 4-8: Probability of a term occurring once compared with the probability of a
term occurring two times.

Looking at the terms binned by the conditional average does not seem to give a

clear pattern for term behavior. This can be seen in Figure 4-9. Terms with higher

average have a heavier tail, as is expected given a that a term that has a higher

conditional average occurs more often on average in documents it occurs in. But the

lack of a consistent pattern implies that the avg is not a good indicator of the overall

t.o.p.d.

Probability given occurrence

If it is true that term occurrence once a term has appeared in a document behaves in

a manner independent of the term’s overall corpus frequency, as seems to be implied

by Figure 4-8, then one thing we can look at is the term’s probability distribution

given the term has occurred, and try to differentiate a term given that we know it has

occurred. Looking at the conditional t.o.p.d. is motivated by the possible existence

of two hidden parameters rather than one. One of the hidden parameters tells us

if the term occurs or not, and the other tells us something about the probability

99

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

P
ro

ba
bi

lit
y

Term occurs exactly w times

AVG: 1.128
AVG: 1.773
AVG: 2.956
AVG: 4.612
AVG: 6.863

(a) Data Set 1

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

P
ro

ba
bi

lit
y

Term occurs exactly w times

AVG: 1.106
AVG: 1.784
AVG: 3.008
AVG: 4.794
AVG: 7.435

(b) Data Set 2

Figure 4-9: The t.o.p.d. for terms with different conditional averages. There does not
seem to be a very consistent pattern for term occurrence across different conditional
averages.

distribution once it has occurred.

If a statistic does not have an effect on the conditional t.p.d.f., as we suspect

could be the case for corpus frequency and document frequency, then when we bin

by that statistic and plot the probability distribution, the lines for each bin should

be identical. On the other hand, if the value is indicative the probability of a term

occurring a certain number of times given it has occurred, then we should see different

behavior depending on the value of the statistic.

Here we show that, if we condition on the term occurring, the document frequency

does indeed create overlapping probability distributions given occurrence. This can be

seen clearly by looking Figure 4-10. Each bin contains terms with the same empirical

probability of occurring, and yet there is hardly any noticeable difference between the

probability that a term will occur exactly ω times. The variation only appears when

we plot the distribution on a log scale, and even there it is tiny.

On the other hand, investigation into the effect of the conditional average number

of times a term occurs given that it has occurred on the distribution shows that it is a

much more informative value. Of course, this is not surprising, since it is the empirical

statistic corresponding to what is left over after removing the probability that the

term occurs. We saw in Table 4.2 that conditional average is much more highly

100

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11

P
ro

ba
bi

lit
y

gi
ve

n
oc

cu
rr

en
ce

Term occurs exactly w times

DF:3.0-8.0
DF: 8.0-15.5

DF: 15.5-26.8
DF: 26.8-43.6
DF: 43.6-68.9

DF: 68.9-106.9
DF: 106.9+

(a) Data set 1

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11

P
ro

ba
bi

lit
y

gi
ve

n
oc

cu
rr

en
ce

Term occurs exactly w times

DF:3.0-8.0
DF: 8.0-15.5

DF: 15.5-26.8
DF: 26.8-43.6
DF: 43.6-68.9

DF: 68.9-106.9
DF: 106.9+

(b) Data set 2

0.0001

0.001

0.01

0.1

1

1 3 5 7 9 11

P
ro

ba
bi

lit
y

gi
ve

n
oc

cu
rr

en
ce

Term occurs exactly w times

DF: 3.0-8.0
DF: 8.0-15.5

DF: 15.5-26.8
DF: 26.8-43.6
DF: 43.6-68.9

DF: 68.9-106.9
DF: 106.9+

(c) Data Set 1 – Log scale

0.001

0.01

0.1

1

1 3 5 7 9 11

P
ro

ba
bi

lit
y

gi
ve

n
oc

cu
rr

en
ce

Term occurs exactly w times

DF: 3.0-8.0
DF: 8.0-15.5

DF: 15.5-26.8
DF: 26.8-43.6
DF: 43.6-68.9

DF: 68.9-106.9
DF: 106.9+

(d) Data Set 2 – Log scale

Figure 4-10: The t.o.p.d. given that the term has occurred for terms with different
document frequencies. The variation is small across different document frequencies,
implying that document frequency is not a good measure of the probability a term
will occur given that the term has occurred.

101

correlated with the probability of a term occurring a certain number of times given

it occurs, and Figure 4-11 demonstrates this further. Binning the term occurrence

probability distribution given that the term has occurred by the term’s conditional

average occurrence gives us groups of terms with very different distributions.

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11

P
ro

ba
bi

lit
y

gi
ve

n
oc

cu
rr

en
ce

Term occurs exactly w times

AVG: 1.0-1.3
AVG: 1.3-1.6
AVG: 1.6-2.2
AVG: 2.2-3.0
AVG: 3.0-4.3
AVG: 4.3-6.2

AVG: 6.2+

(a) Data Set 1

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11

P
ro

ba
bi

lit
y

gi
ve

n
oc

cu
rr

en
ce

Term occurs exactly w times

AVG: 1.0-1.3
AVG: 1.3-1.6
AVG: 1.6-2.2
AVG: 2.2-3.0
AVG: 3.0-4.3
AVG: 4.3-6.2

AVG: 6.2+

(b) Data Set 2

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 3 5 7 9 11

P
ro

ba
bi

lit
y

gi
ve

n
oc

cu
rr

en
ce

Term occurs exactly w times

AVG: 1.0-1.3
AVG: 1.3-1.6
AVG: 1.6-2.2
AVG: 2.2-3.0
AVG: 3.0-4.3
AVG: 4.3-6.2

AVG: 6.2+

(c) Data Set 1 – Log scale

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 3 5 7 9 11

P
ro

ba
bi

lit
y

gi
ve

n
oc

cu
rr

en
ce

Term occurs exactly w times

AVG: 1.0-1.3
AVG: 1.3-1.6
AVG: 1.6-2.2
AVG: 2.2-3.0
AVG: 3.0-4.3
AVG: 4.3-6.2

AVG: 6.2+

(d) Data Set 2 – Log scale

Figure 4-11: The t.o.p.d. given the term has occurred for terms with different condi-
tional averages. Binning by conditional average produces much more variation than
binning by document frequency.

Looking at the standard deviation of the t.o.p.d. between terms in a bin gives

us an idea of how much variation there actually is in each bin. If there is a lot of

variation within a bin, then the bin is not doing a good job of summarizing the terms

it contains.

We find that there is less deviation in the bins that are created by binning terms

102

by avgi than the bins created by binning by dfi. It is interesting to note there is a

change in the standard deviation within a bin as the statistic that the bin represents

increases in magnitude. When terms are binned by document frequency, as the docu-

ment frequency increases, the standard deviation in the bins decreases. On the other

hand, when the terms are binned by conditional average, as the conditional average

increases, the standard deviation in the bins increases. Since most terms typically

have relatively low document frequency and conditional average values, the small

valued bins are the largest. This means that the value dfi, which has a particularly

large standard deviation for low document frequency bins, is a lousy indicator of the

term’s conditional t.o.p.d. On the other hand, the value avgi, which does well for low

conditional average bins, is a better one.

We have chosen several representative document frequency and average bins to

illustrate this point, and they can be seen in Figure 4-12. For each bin, and for each

integer ω, we measured the standard deviation over terms in the bin of the number of

documents where that term appeared ω times. The dark line in the graphs represents

a large bin where the average document frequency or average in that bin is low. You

can see that the dark line is significantly lower for the average bin than the document

frequency bin. The light line represents the standard deviation for a smaller bin

where the average document frequency or average value is high. You can see that the

standard deviation for average bins is now similar to document frequency bins.

103

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9

S
ta

nd
ar

d
de

vi
at

io
n

Term occurs exactly w times

Low DF
High DF

(a) df – Data Set 1

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9
S

ta
nd

ar
d

de
vi

at
io

n

Term occurs exactly w times

Low AVG
High AVG

(b) avg – Data Set 1

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9

S
ta

nd
ar

d
de

vi
at

io
n

Term occurs exactly w times

Low DF
High DF

(c) df – Data Set 2

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9

S
ta

nd
ar

d
de

vi
at

io
n

Term occurs exactly w times

Low AVG
High AVG

(d) avg – Data Set 2

Figure 4-12: Comparison of standard deviation of the t.o.p.d. for terms binned by
document frequency and conditional average.

104

Chapter 5

Building a Better Model

In Chapter 4 we saw how the multinomial model isn’t reflected in the TREC data.

We also gained a better understanding of what sort of information, if not that which

is predicted by the multinomial model, is actually available in the text. Now we will

look at how we can improve retrieval by improving our model to match what we

learned more closely. Recall from Section 4.2 that when building a new model we are

interested in focusing on only having one parameter per distribution per term.

Given the textual analysis that we have done, there are several conclusions that

we could draw with the constraint of one parameter per term. We could say that, as

we saw in Section 4.4.2, once a term occurs it is much more likely to occur again. A

closer look at the t.o.p.d. of the average term reveals that it appears virtually straight

on a log-log scale. This implies a power law distribution. We could therefore attempt

to do retrieval assuming the t.p.d.f. for each term is a power law distribution. We

will discuss this approach in Section 5.1.

Or, we could declare, as we saw in Section 4.5.2, that once a term has occurred, the

number of additional times that a term occurs always has the same distribution. This

would imply that information about the number of term occurrences in a document

beyond the first occurrence is irrelevant. A model built using this assumption would

be a binary model. The initial probabilistic models were binary, and these were later

discarded in favor of models that accounted for the number of term occurrences. It

is surprising that our data analysis would lead us back to this model. We will discuss

105

using a binary model in Section 5.2.

We will conclude this chapter by looking at the results we get from these two new

models that we try, compared with the results we found for the multinomial model.

We find that while the binary model does poorly when we try to estimate the relevant

term distribution, it does well when given the correct term distribution. On the other

hand, the power law model does well both when trying to estimate the relevant term

distribution and when given the correct one.

5.1 Power Law Distribution

In this section we will discuss using a power law distribution to model the t.p.d.f. First

we will motivate using a power law distribution. Then we will talk about two ways

that we try to model the assumption that the relevant and irrelevant term occurrence

distributions follow a power law distribution.

In Section 5.1.2 we will discuss the first method we use to incorporate a power law

distribution into our model. In this method we will pre-process each term’s t.o.p.d.

so that they appear multinomial. Then we can retrieve over these pre-processed

distributions using our multinomial infrastructure. This allows us to quickly test our

assumption that the t.p.d.f. for each term is a power law distributions.

The second approach we will take involves directly including the power law as-

sumption into our model, and we will discuss this in Section 5.1.3. However, it turns

out that the assumptions we make to do this are too strong. We will discuss some of

the problems we have with this model, as well as potential ways to fix them. Since

we have not yet avoided the problems, though, in Section 5.3, when we compare the

results we get from this model with the multinomial model and the other model we

develop, we will use the first approach to produce the power law model results.

5.1.1 Motivation

Recall from Section 4.4.2 that the multinomial model implies that the t.p.d.f. for

a term is more or less straight on a graph with a log-scale y-axis. However, as we

106

saw in Figure 4-5 during our discussion of our data analysis, the empirical t.o.p.d.

isn’t straight on a log scale. We propose instead that the t.p.d.f. is a power law

distribution.

Figure 5-1 consists of four graphs of the t.o.p.d. that we found through our textual

analysis. In the first two graphs, graphs a and b, the multinomial distribution is also

displayed. A power law distribution is also graphed on these two graphs, but since

it matches the data so much more closely than the multinomial distribution, it is

hard to tell the two lines apart. When we ignore the expected distribution for the

multinomial model and focus on only the data and the power law distribution, we

find that the two distributions actually are very close.

A power law distribution defines the probability of observing ω occurrences of a

term as being proportional to (a+ω)b, where a and b are constants for that distribu-

tion. Let us discuss what sort of behavior we expect from our terms if they are dis-

tributed according to a power law distribution. If the probability of observing a term

ω number of times (Pr(ω)) is proportional to (a+ω)b then log(Pr(ω)) ∝ b log(a+ω).

This means that a plot of the term occurrence probability distribution should appear

straight on a log-log scale. As you can see in Figure 5-2, this is close to true for what

we observe in the data.

How we set the values for a and b is, of course, important if we are to use a power

law distribution in our model. In Figure 5-1, where we match a power law distribution

to the term distribution we observe in the data, for Data Set 1 we set a to 0.114 and

b to 2.1. For Data set 2, we use a = 0.114 and b = 1.6. In Figure 5-2 we see the

difference it makes to set a = 1 as compared to a = 0.114. It is clear that when a is

0.114 the data is closer to being a straight line on a log-log scale. This means that it

approximates a power law distribution much more closely than when a is 1.

Because we want our model for the term distribution to be represented by only

one parameter, while a power law distribution actually requires two, we will take one

of these values, namely a, to be constant across all terms. We will consider each term

to have its own specific bi.

107

1e-35

1e-30

1e-25

1e-20

1e-15

1e-10

1e-05

1

0 2 4 6 8 10

P
ro

ba
bi

lit
y

Term occurs exactly x times

Data
Multinomial
Power law

(a) Data Set 1 – with multinomial

1e-30

1e-25

1e-20

1e-15

1e-10

1e-05

1

0 2 4 6 8 10
P

ro
ba

bi
lit

y
Term occurs exactly x times

Data
Multinomial
Power law

(b) Data Set 2 – with multinomial

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

P
ro

ba
bi

lit
y

Term occurs exactly x times

Data
Power law

(c) Data Set 1

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

P
ro

ba
bi

lit
y

Term occurs exactly x times

Data
Power law

(d) Data Set 2

Figure 5-1: The empirical t.o.p.d. compared with what is expected from multinomial
and power law distributions. Even when viewed closely (graphs c and d) the empirical
t.o.p.d. overlaps significantly with the t.p.d.f. for a power law distribution.

108

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.1 1 10 100

P
ro

ba
bi

lit
y

Term occurs exactly w+a times

a=0.114
a=1

(a) Data Set 1

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.1 1 10 100

P
ro

ba
bi

lit
y

Term occurs exactly w+a times

a=0.114
a=1

(b) Data Set 2

Figure 5-2: The empirical t.o.p.d. for terms in Data Set 1 and 2 shown on a log-log
scale, with different values for α. A straight line implies a power law distribution.

5.1.2 Pre-process data to match multinomial model

The multinomial model assumes that the term occurrence distribution is straight on

a log scale. The power law model that we propose assumes that the term occurrence

distribution is straight on a log-log scale. This suggests that it might be possible to

pre-process the data into the straight line distribution that the multinomial model

expects, and then to do retrieval using our multinomial infrastructure using this pre-

processed data instead.

The pre-processing is simple. Note that the power law distribution, xlog(p), is equal

to plog(x). Compare this with the px that is roughly expected by the multinomial

model. It becomes apparent that using the log of the number of times a term occurs

in a document gives us a term occurrence distribution that is roughly similar to what

we would expect from a multinomial model. In other words, the log of the number of

occurrences should follow a multinomial distribution.

Thus one model we could use that assumes the t.p.d.f. is a power law distribution

is a modified multinomial model. Instead of using the value for dj
i we could use the

value for log(1 + dj
i). There is a potential issue here in that by using the log of the

term occurrence we will be using real numbers in our multinomial framework rather

than integers as we were using before. However, this fortunately does not pose a

109

problem. The results using this method of retrieval are discussed in Section 5.3.

Done in practice Note that our taking the log of the term frequency is similar in

practice to the log that is taken in the standard tf.idf vector space model. This model

was developed empirically because it performed the best. What we are probably

seeing here is a textual motivation for what was developed because it performed the

best.

5.1.3 Alter model

The other thing that we can do, given that the probability of a term occurring ω

number of times seems to actually obey a power law rather than being multinomial,

is to directly alter our model to incorporate a power law distribution. Here we will

describe the details of how we can do this. First we will talk about the generative

model associated with using a power law distribution, and go into more detail about

a power law distribution. Then we will talk about how we learn the distribution using

this model. Finally, since this model does not naturally incorporate variable length

documents the way that the multinomial model did, we will discuss how we avoid

assuming all documents are the same length.

Generative model

The generative model for the power law distribution is quite simple. When creating

a document, each term is sampled. Since each term obeys a power law distribution,

while most of the time we will get zero occurrences of the term in our document, occa-

sionally we will get one or more occurrences of the term in the document, distributed

according to the power law.

Given this is our generative model, it is clear that we do not have any control

over the length of a document. The expected document length is the document

length found by summing the number of times that we expect each term to occur

in a document. Because of the law of large numbers, documents that do not have

110

nearly this expected length will be highly unlikely. This means that we must somehow

incorporate length into the model separately.

Understanding a power law distribution

Let us look a little more closely at how we express the probability of the number

of term occurrences we will get in our document. In our new model, we want the

probability of a term occurring ω number of times be distributed according to a power

law (Pr(ω) ∝ (a + ω)−bi). Recall that we are taking a to be constant. We are left

with only bi to estimate. If we estimate bi we know, within our model, everything

there is to know about term i.

Pr(dj
i |bi) =

(a+ dj
i)

−bi∑∞
0 (a+ dj

i)
−bi

(5.1)

Let us look a little more closely at the normalizing constant. There is actually no

closed form solution to this summation. For this reason, we will use the integral of

the value instead. We discuss the ramifications of doing this later. But for now, let

us solve the integral to find the normalizing factor.

∫ ∞

0

(a + dj
i)

−biddj
i =

∫ ∞

a

y−bidy

=
−1

(bi − 1)ybi−1
|∞a

= 0− −1
(bi − 1)abi−1

To further simplify this equation, despite the fact that we saw better estimates for a

in figures 5-1 and 5-2, we will assume that a is 1.

=
1

bi − 1

Substituting this into Equation 5.1, we find Pr(dj
i |bi) = (bi − 1)(1 + dj

i)
−bi.

111

Continuous v. discrete It is important to note that are using a continuous dis-

tribution to model one that is actually discrete. While the same computation we are

doing could be done with a discrete distribution, the math in intractable. In some

sense using a continuous distribution is reasonable, because the discrete outcomes that

we see in the data are possible under a continuous probability distribution. Using a

probability density function to model a discrete probability distribution is reasonable

if the distribution is more or less flat. However, we are modeling a distribution that

drops very quickly from a very high probability of a term not occurring at all to a

very small probability of occurring exactly once. It turns out that this sharp drop

results in a large enough problem to make the model not work.

That is not to say that there aren’t ways around the problem. For example,

instead of using the probability density function to model the entire distribution, we

could us the discrete values for the probability that a term occurs exactly 0 and 1

times, and then use a density function for the tail, where the distribution is actually

much more flat. We have not looked into such hybrid distributions yet, but it is surely

worth doing.

Learning the distribution

Let us revisit the learning that we discussed in Section 3.2.6 for the multinomial model,

and understand now how we will estimate the relevant term distribution given that

we assume the t.p.d.f. a power law distribution. We need to build an understanding

of how we can find the true bi for term i. Since we really don’t know it we can

place a distribution over the possible values bi could take on. In order to perform

retrieval, we first must find E[bi]. We will use ϑ, as we did in our discussion of the

multinomial model, to represent the expected value of this parameter. Finding ϑ

involves first understanding the initial estimate we make about the distribution, and

then understanding how we use expectation maximization to learn the distribution.

Setting the prior Setting the prior for the distribution, as well as learning it, would

be much easier if the distribution we were using matched a distribution for which we

112

already knew a nice update rule, the way we did for the multinomial model. If this

were the case, we would not have to derive everything ourselves. One well known

distribution that this seems like it might be related to the power law distribution is

an exponential distribution. With a little bit of math, we can change our power law

distribution into an exponential distribution:

Pr(dj
i |bi) = (bi − 1)(1 + dj

i)
−bi

Pr(dj
i > Z|bi) =

∫ ∞

Z

(bi − 1)(1 + dj
i)

−biddj
i

= −(1 + dj
i)

−(bi+1)|∞Z
= (1 + Z)−(bi+1) (5.2)

If we now let yj
i = log(1 + dj

i):

Pr(yj
i > c|bi) = Pr(ey > ec)

= Pr(1 + dj
i > ec)

= Pr(dj
i > ec − 1)

= (1 + ec − 1)−(bi+1) Using Eqn. 5.2

= e−c(bi+1)

Of course, what we are interested in is the probability density function of yj
i . This

is easy to find from the above, by simply taking the derivative of Pr(yj
i > c|bi), that

Pr(yj
i |bi) = (bi + 1)e−(bi+1)yj

i . We arrive at an exponential distribution.

Since this distribution now matches the well understood exponential distribution,

we know how to find the expected value for bi + 1, and thus find the probability of

observing yj
i in our data. The expected value of bi + 1 is

n∑n
j=1 log(1+dj

i)
[2], and using

this we can set our initial estimates. The exponential distribution, like the Dirichlet

distribution we use for the multinomial model, also has a nice update rule that we

can use when learning.

113

Expectation We will now briefly discuss how we perform learning to find the most

likely relevant distribution. Recall Equation 2.1 that says the posterior probability of

a document is:

Pr(rj |dj) =
Pr(dj|rj) Pr(rj)

Pr(dj)

In our power law model, term occurrence remains independent, so we can continue to

define Pr(dj|rj) =
∏m

i=1 Pr(d
j
i |rj). Given our new model, this value becomes

∏m
i=1(bi+

1)e−(bi+1)yj
i . Note that while for the multinomial model we could ignore terms not in

a document, we can no longer do that. We can, however, factor a constant out of the

distribution for comparable efficiency.

Recall that in the expectation step we are given the expected values for the pa-

rameters of our distributions, ϑi and ϑ̂i This means that the posterior probability of

a document is:

Pr(rj = 1|dj) =
prel

∏m
i=1 ϑie

−ϑi log(1+dj
i)

prel
∏m

i=1 ϑie−ϑi log(1+dj
i) + (1− prel)

∏m
i=1 ϑ̂ie−ϑ̂i log(1+dj

i)

Maximization In the “maximization” step we set the parameter for the t.p.d.f.

for each term to maximize the likelihood of observing our data. Our belief about the

distribution over bi has a simple update rule similar to that for a multinomial that

we can use to do this.

Recall that for the multinomial model, the Dirichlet prior allowed us to update

our belief about the corpus by simply adding in our observations. Here, also, we can

update our belief about the corpus by adding in our observations, in this case our

observations of log(1 + dj
i). This is another motivation for setting a to one. Since

log(1) = 0, we do not need to update our distribution for terms which do not occur in

a document. ϑi =
n∑n

j=1 log(1+dj
i)
. This simplicity comes directly from the fact that we

are using an exponential distribution, and Bernando and Smith’s book on Bayesian

theory is a good resource to learn more [2].

114

Incorporating length

Length is also an important factor for us to consider when using a power law model.

While not the case with the multinomial model, often models have the implicit as-

sumption that all documents are of the same length, and require some sort of nor-

malization before hand to make the actual documents match this assumption. The

multinomial model is free of this assumption because it assumes that each word oc-

currence is chosen independently. Length does not affect the probability of term

selection. However, as we have mentioned, the power law model we describe here

does need to take special consideration when understanding length.

Here we will look at the effect that length has on our documents in an attempt

to better understand how we should incorporate length into our model. While we

can find the expected length of a document, it is messy. We need to find the ex-

pected probability of seeing each term and sum over them. However, while finding

the expected value for dj
i is difficult, finding the expected value for log(1 + dj

i) is

straightforward.

E[log(1 + dj
i)] = E[yi] =

∫ ∞

0

Pr(yj
i > c)dbi

=

∫ ∞

0

e−(1+bi)cdbi

=
1

1 + bi

Let us define the document statistic log-length. The log-length of a document

refers to the sum of the log of number of times each term occurs in the document.

We will refer to the log-length as llj . llj =
∑m

i=1 log(1 + dj
i). You can see that in this

model there is an expected log-length for a document, and anything that varies from

it is very unlikely.

Given that bi is not a function of the log-length of a document, the log-length

will be constant constant, namely
∑m

i=1
1

1+bi
. What we would like is for the expected

value of log(1 + x) to scale linearly with the log-length, llj . If, instead of bi + 1, we

115

use bi+1
llj
, we will get this desired behavior.

Pr(yj
i > c) =

∫ ∞

0

e
−(1+bi)

c
llj dbi

= e
−c

(bi+1)

llj

This means that we should observe
yj

i

llj
so that we have an exponential distribution

again (since Pr(
yj

i

llj
> c) = e−c(1+bi)).

Whether or not this is a reasonable thing to do involves going to the data. Let

us look at the effect of log-length in relationship to the log of the number of times a

term occurs (log(1 + dj
i)). We look at the average value for log(1 + dj

i) for each term

in a corpus of documents of two different log-lengths. This allows us to understand

if length effects all terms in the same way.

Let’s look closely at how a document’s log-length effects the average value for

log(1 + dj
i) on a term by term basis. To do this, as we earlier binned documents into

two bins of documents with more or less the same lengths, we now bin documents

into two bins of documents with more or less the same log-lengths. The document in

the first bin have a log-length of near 72, and the documents in the second bin have a

log-length of near 220. For every term occurring in either set, we look at its average

log(1 + dj
i) in both document sets.

These values can be seen in Figure 5-3. Because there are so many terms, we

provide in addition to the graph of each individual term the binned values showing us

the overall trend. The relationship, on a log-log scale, is reasonably close to the x = y

line, but not perfectly, or, in other words, close to linear, but not actually linear. If

it were linear, that would imply that the value log(1 + dj
i) is linear with respect to

log-length. Although this is not exactly the case, the model seems plausible.

5.2 Binary Model

The other sort of model we investigate is a binary model. A binary model postulates

that only a term’s occurrence in a document, and not the number of times that term

116

0.1

1

10

100

1000

10000

100000

0.1 1 10 100 1000 10000 100000

D
oc

um
en

ts
 w

ith
 lo

g-
le

ng
th

 o
f 2

20

Documents with log-length of 72

(a) All terms

0.1

1

10

100

1000

10000

100000

0.1 1 10 100 1000 10000 100000

D
oc

um
en

ts
 w

ith
 lo

g-
le

ng
th

 o
f 2

20

Documents with log-length of 72

Binned
x=y

(b) Binned

Figure 5-3: The average value of log(1 +ω) for a term when it appears in documents
of two different log lengths. Although the relationship is reasonably close to linear,
it is not actually linear.

occurs in the document, is important for retrieval. Initial probabilistic models were

built taking into account only term presence, but were later updated to account for

term frequency within a document. For example, McCallum and Nigam discuss how

they find improved performance for naive Bayes text classification when not using

binary features [26].

One potential problem for the binary model is similar to the problem that we saw

in the power law model, and that is the problem of length. The generative binary

model is that each term either appears or does not appear in a document. There

is no way to control the length of the document, and lengths that are distant from

the expected length are not likely to occur. Early binary models did not have this

problem, since early corpora consisted of documents of primarily the same length.

However, modern corpora, such as TREC, have much greater variation for length

that must be accounted for [18]. Here, however, we discuss our first investigations

into using a binary model, where we do not account for length.

As we do for the power law model, we approximate a binary model within our

multinomial model framework. This allows us to quickly implement a binary model

without too much additional coding. When we observe a term in a document, instead

of using the actual count of the number of times a term occurs in that document, we

117

use the value one. This allows us to quickly do initial tests of a binary model without

a significant amount of coding.

The simple modification is a reasonable approximation for the following reason.

Suppose we are generating a document with � terms. In the multinomial genera-

tive model, we do this by sampling from the appropriate term distribution in the

multinomial model. However, in the binary model, where we are only interested in

the presence or absence of a term, we want to guarantee that each of these terms is

unique.

Actually, the odds that we get more than one occurrence of a term with the

multinomial model is fairly low. In fact, this is exactly why we had trouble with

the standard multinomial model; the model was not predicting that terms occur in

documents as often as they do. If the odds of getting duplicates are small enough,

we can ignore this possibility and assume that all � terms we generate are actually

distinct.

The difference between the multinomial model and a binary model lies in the

document generation. When generating a document under the multinomial model,

we sample with replacement from a term distribution. When generating a docu-

ment under the binary model, we sample without replacement. But removing a few

terms doesn’t change the probabilities very much at all, so the probability of a term

appearing in a document is very similar either way.

5.3 Results

In this section we look at the results we find when we test the two new models

described here, the power law model and the binary model, as compared with the

multinomial model we begin with. We use the same corpus we use for testing the

multinomial model, described in Section 3.3.1 to test the new models.

Recall from Section 3.3, where we discuss the results we found for the multinomial

model, that there are three distinct approaches that we take when looking at the

retrieval performance of a model, based on how we find the relevant term distribution.

118

The three term distributions that we retrieve with are, one, a crude initial estimate

that merely says the query terms are more likely in the relevant term distribution,

two, the maximum likelihood estimate that we find using machine learning, and three,

the correct distribution, found by using the documents that are actually relevant.

5.3.1 With an initial estimate

Here we discuss what we found by doing retrieval using only our initial guess as to

the relevant distribution. The results that we find using this distribution represent

the quality of search we could expect to be able to retrieve given that we wanted

to maintain performance time similar to that of the vector space retrieval systems.

It does not necessarily reflect how well the model matches the text but rather also

encompasses the quality of our initial estimate. The results can be seen in Figure 5-4.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Multinomial
Power law

Binary
tf.idf

Figure 5-4: Results found using the new models. The relevant distribution used is
the initial estimated distribution.

It appears that the power law model and the multinomial model produce results

that are remarkably similar. However, the binary model sees a marked decrease in

119

performance. It appears matching the model more closely to the data does not help

in this case.

5.3.2 With learning

Now let us discuss what we found by doing retrieval using the relevant term distri-

bution we find after performing expectation maximization in an attempt to learn a

distribution that increases the likely of the corpus. This gives us some idea as to how

good our model combined with our initial estimate of the relevant distribution and

our learning technique is. Only if all of these factors work successfully will we see

improvement in our results.

Recall from Section 3.2.7 how we discuss there are several constants over which

we have control when building a model. We show the results for a good setting

of these constants in Figure 5-5. With learning you can see that the multinomial

results performs the best. Only in the very low recall portion of the curve do we see

the precision drop. For most of the curve the precision is improved. Because the

binary model changes in a similar manner to the multinomial model with learning, it

continues to perform the least well of the three models.

5.3.3 With the correct distribution

We look also at the results we get with our models using the correct relevant term

distribution. Using the correct distributions gives us an idea of how good the model

is unclouded by the quality of our estimation. It does not, however, give us an idea

of the quality of results we could expect to obtain for our retrieval system.

We discuss specifically how we find the correct distributions with respect to the

multinomial model in Section 3.3.3. Recall that estimating the correct distribution is

similar to how we make our initial crude estimate of the relevant term distribution,

only instead of viewing the query as a relevant document, we view all of the correct

results as being labelled relevant. Because we continue to start with the corpus

distribution as our prior on the term distribution, there is some nonzero probability

120

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

No learning
Learning

(a) Multinomial model – no learning v.
learning

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
P

re
ci

si
on

Recall

No learning
Learning

(b) Power law model – no learning v. learn-
ing

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

No learning
Learning

(c) Binary model – no learning v. learning

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Multinomial
Power law

Binary

(d) Comparison of learning across models

Figure 5-5: Results found using the new models. The relevant distribution is found
with learning.

121

of observing every term. Recall from section 3.2.7 that the prior that we place on the

terms is as strong as if we had observed as many documents as are relevant with the

corpus distribution.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Initial estimate
Correct distribution

(a) Multinomial model – initial estimate v.
correct distribution

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Initial estimate
Correct distribution

(b) Power law model – initial estimate v.
correct distribution

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Initial estimate
Correct distribution

(c) Binary model – initial estimate v. cor-
rect distribution

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Multinomial
Power law

Binary

(d) Comparison of correct distribution
across models

Figure 5-6: Results found using the new models. The relevant distribution is found
by learning from the correct distribution.

As you can see in Figure 5-6, both the power law model and the binary model

perform significantly better than the multinomial model. This implies that, while

there may be difficulties with learning the distribution, we do have a better under-

standing of the distribution after our analysis. We can see that is is not because

the binary model matches the data poorly that people began using term frequency.

The binary model does do well with the correct distribution. It is rather because the

122

binary model performs poorly when we try to estimate the relevant term distribution

that they do so.

Learning from the correct distribution

When we try using expectation maximization from the correct distribution, if our

model is correct, we should not be able to find a distribution that makes our corpus

more likely. The results from learning from the correct distribution can be seen in

Figure 5-7. As you can see, all models learn a new distribution, although the binary

model seems to do so the least. This means that, while we may have found better

models to use for retrieval, they are still not perfect.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Multinomial
Power law

Binary

Figure 5-7: Learning from the correct distribution.

123

124

Chapter 6

Conclusion

In this thesis we have discussed the importance of building a model for information

retrieval. One of the benefits we talked about in using a model is that it allows

us to make our assumptions explicit. However, the primary advantage of having

explicit assumptions is that then we analyze them. By understanding how valid our

assumptions are we can understand how valid our model is. A model is useless if we

do not ground the assumptions that it is build on in the real world. For this reason,

we have used textual analysis to understand which assumptions in the multinomial

model are broken. We have endeavored to fix those assumptions using what we

learned about the text. This processes, we have shown, results in improved retrieval.

Specifically, we found that a term appears much more clustered within a document

than is predicted by a multinomial model. When we updated the model to reflect

the power law distribution that the terms more closely resembled, we found that the

quality of the search results improved. We were able to do this while not changing

the retrieval complexity.

6.1 Future Work

What we have found so far has been very exciting, but we are really only just be-

ginning to understand the statistical properties of the text. There are a number of

interesting avenues to pursue from here. They fall under the same categories as what

125

we have pursued in this thesis. There is much more to understand about the sta-

tistical properties of term occurrence within the text. There are also new models to

try even given just the textual analysis that we have already done. Additionally, the

improved models that we propose in this thesis can be understood further.

6.1.1 Analysis

There is much more we can learn from the text. We will continue to explore ways to

find the hidden parameter that describes term occurrence from the observations of

term occurrence that we have. One specific type of analysis that we are interested in

pursuing is query specific analysis.

Query specific analysis

So far we have been looking at the corpus as a whole. We are interested in look-

ing at what differences are actually seen in the term distributions between relevant

documents and non-relevant documents. In addition to learning more about the dis-

tributions, by looking at where the query terms fall in these distributions, we can

incorporate the query terms in a more principled way.

6.1.2 Model building

We had some trouble implementing a power-law model because, to simplify the math,

we assumed that the t.o.p.d. was continuous rather than discrete. However, since we

saw evidence that using a power-law distribution does improve retrieval, it is worth

pursuing this model further. The power-law model can surely be improved incorpo-

rating a discrete distribution instead. If a discrete distribution proves to difficult to

work with, we could explore a hybrid of discrete and continuous distributions.

Also, a two parameter model suggests itself given the analysis we have done into

document frequency, the conditional average, and their relationship. One possible

generative model is that we use the document frequency to determine if a term appears

in a document or not, and then, if the term appears, we use the conditional average

126

to determine how many times the term should appear.

6.1.3 Testing

In order to allow us to understand the results we get, as well as to do the necessary

machine learning without worrying too much about efficiency, we have done our

testing with a relatively small corpus. By running the same tests on a larger corpus,

we can get a better idea of how successful the modifications we have made to the

model really are.

We also plan to use cross-validation to determine the optimal parameter settings

for our models when using the empirically correct term distributions. In doing so,

the comparison between performance of different models on the correct distribution

will be more fair.

127

128

Bibliography

[1] Adam Berger and John D. Lafferty. Information retrieval as statistical trans-

lation. In Research and Development in Information Retrieval, pages 222–229,

Berkeley, CA, August 1999.

[2] Jose M. Bernardo and Adrian F.M. Smith. Bayesian Theory. John Wiley and

Son Ltd, London, first edition, 1994.

[3] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Uni-

versity Press, Oxford, 1995.

[4] Chris Buckley, Amit Singhal, Mandar Mitra, and Gerard Salton. New retrieval

approaches using SMART: TREC 4. In The Fourth Text REtrieval Conference

(TREC-4), 1996.

[5] Kenneth W. Church. One term or two? In 18th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, 1995.

[6] W. Bruce Croft and David J. Harper. Using probabilistic models of document

retrieval without relevance information. Journal of Documentation, 35:285–295,

1979.

[7] William Frakes and Ricardo Baeza-Yates. Information Retrieval: Data Struc-

tures and Algorithms. Prentice Hall, 1992.

[8] Nir Friedman. The bayesian structural EM algorithm. In Fourteenth Conference

on Uncertainty in Artificial Intelligence, pages 129–138, San Francisco, Califor-

nia, 1998.

129

[9] Norbert Fuhr. Models in information retrieval.

[10] Norbert Fuhr. Probabilistic models in information retrieval. The Computer

Journal, 35(3):243–255, 1992.

[11] Jade Goldstein, Mark Kantrowitz, Vibhu Mittal, and Jaime Carbonell. Summa-

rizing text documents: Sentence selection and evaluation metrics. In Research

and Development in Information Retrieval, pages 121–128, 1999.

[12] Warren R. Greiff. A theory of term weighting based on exploratory data analysis.

In Proceedings of SIGIR-98, Melbourn, Australia, August 1998.

[13] Alan Griffith, H. Claire Luckhurst, and Peter Willett. Using interdocument

similarity information in document retrieval systems. Journal of the American

Society for Information Science, 37:3 – 11, 1986.

[14] Donna Harman. The trec conferences. In Hypertext, Information REtrieval,

Multimedia, pages 9–28, 1995.

[15] S. Harter. A probabilistic approach to automatic keyword indexing, part I. on the

distribution of specialty words in a technical literature. Journal of the American

Society for Information Science, 26(4):197–206, July-August 1975.

[16] S. Harter. A probabilistic approach to automatic keyword indexing, part II.

an algorithm for probabilistic indexing. Journal of the American Society for

Information Science, 26(4):280–289, July-August 1975.

[17] D. Heckerman. A tutorial on learning with Bayesian networks. Technical Report

MSR TR-95-06, Microsoft Research, Redmond, Washington, 1995. Revised June

1996.

[18] K. Sparck Jones, S. Walker, and S.E. Robertson. A probabilistic model of infor-

mation retrieval: development and status. Technical Report TR-446, Cambridge

University Computer Laboratory, September 1998.

130

[19] Karen Sparck Jones. A statistical interpretation of term specificity and its ap-

plication in retrieval. Journal of Documentation, 28:11–21, 1972.

[20] T. Kalt. A new probabilistic model of text classification and retrieval. Technical

Report IR-78, University of Massachusetts Center for Intelligent Information

Retrieval, 1996.

[21] Boris Katz. From sentence processing to information access on the world wide

web. In AAAI Spring Symposium on Natural Language Processing for the World

Wide Web, Stanford, CA, 1997.

[22] Michelle Keim, David D. Lewis, and David Madigan. Bayesian information re-

trieval: Preliminary evaluation. In Preliminary Papers of the Sixth International

Workshop on Artificial Intelligence and Statistics, pages 303–310, Fort Laud-

erdale, Florida, January 1997.

[23] K. L. Kwok and M. Chan. Improving two-stage ad-hoc retrieval for short queries.

In Research and Development in Information Retrieval, pages 250–256, 1998.

[24] David D. Lewis. Naive (Bayes) at forty: The independence assumption in infor-

mation retrieval. In EMCL, pages 4–15, 1998.

[25] Christopher D. Manning and Hinrich Schutze. Foundations of statistical natural

language processing. The MIT Press, first edition, 1999.

[26] Andrew McCallum and Kamal Nigam. A comparison of event models for naive

Bayes text classification. In AAAI-98 Workshop on Learning for Text Catego-

rization, 1998.

[27] Kathleen McKeown, Judith Klavans, Vasileios Hatzivassiloglou, Regina Barzilay,

and Eleazar Eskin. Towards multidocument summarization by reformulation:

Progress and prospects. In AAAI/IAAI, 1999.

[28] Kenny Ng. A maximum likelihood ratio information retrieval model. In Eighty

Text REtrieval Conference (TREC-8), 1999.

131

[29] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Using EM to classify

text from labeled and unlabeled documents. Technical Report CMU-CS-98-120,

School of Computer Science, CMU, Pittsburgh, PA 15213, 1998.

[30] Kamal Nigam, Andrew K. McCallum, Sebastian Thrun, and Tom M. Mitchell.

Learning to classify text from labeled and unlabeled documents. In Proceedings of

AAAI-98, 15th conference of the American Association for Artificial Intelligence,

pages 792–799, Madison, US, 1998. AAAI Press, Menlo Park, US.

[31] Yoram Singer Nir Friedman. Efficient bayesian parameter estimation. In Ad-

vances in Neural Information Processing Systems. The MIT Press, 1999.

[32] Jay M. Ponte and W. Bruce Croft. A language modeling approach to information

retrieval. In Research and development in Information Retrieval, pages 275–281,

1998.

[33] M.F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[34] B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge University

Press, 1996.

[35] S. E. Roberston. The probability ranking principle in ir. Journal of Documen-

tation, 33(4):294–304, December 1977.

[36] S. Robertson and S. Walker. Some simple effective approximations to the 2-

Poisson model for probabilistic weighted retrieval. In Proceedings of the Seven-

teenth Annual International ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval, pages 232–241, Dublin, Ireland, 1994.

[37] Ronald Rosenfeld. Two decades of statistical language modeling: Where do we

go from here. In IEEE, 2000.

[38] M. Sahami. Learning limited dependence Bayesian classifiers. In KDD-96: Pro-

ceedings of the Second International Conference on Knowledge Discovery and

Data Mining, pages 335–338, 1996.

132

[39] G. Salton. The SMART retrieval system: experiments in automatic document

processing. Prentice-Hall, Englewood Cliffs, N.J., 1971.

[40] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic

indexing. Communications of the ACM, 18(11):613–620, 1975.

[41] Craig Silverstein, Monika Henzinger, Hannes Marais, and Michael Moricz. Analy-

sis of a very large altavista query log. Technical Report 1998-014, Digital Systems

Research Center, October 1998.

[42] Don Swanson. Information retrieval as a trial-and-error process. Library Quar-

terly, 47(2):128–148, 1977.

[43] C. J. vanRijsbergen. Information Retrieval. Butterworths, London, second edi-

tion, 1979.

133

